It becomes increasingly evident that now, more than ever before, a democratic country needs a pooling of ideas in order to make the best possible decisions.

—Clyde R. Miller, Columbia University
Let Us Examine a Tradition

RECENTLY from a number of quarters there have come complaints that the modern program of the teacher of agricultural education is too broad and includes too many subjects. It has been pointed out that the vocational training of students is not as highly emphasized as it should be. The conclusion is reached that there is a tendency to make agricultural education more like the general educational program and less like the vocational education program.

It is true that agricultural education has been making efforts to broaden its program in order to meet the demands of modern agriculture. But it is also true that there is a need for a more specialized program that will prepare students for specific careers in agriculture.

The main problem is to find a balance between the two. The agricultural education program should provide a strong foundation in agricultural science and technology, but also give students the opportunity to specialize in areas that interest them.

The agricultural education program should be able to address both traditions: the broad education that prepares students for a wide range of careers and the specialized training that prepares them for specific roles in agriculture.

Teachers Should Be Scientific Realists

This great challenge to the teachers of this nation, and of all democratic nations, is to develop these ideals, abilities, and skills that will make for social and civic growth and for economic security. There will be no more need for the same old officials, alike or like the other.

The model students have that they should educate for democracy, and not by knowing what democracy really is, just educated for amnesia.

This article was written to provide guidelines for individuals who are interested in teaching agricultural education. It provides strategies and tips on how to develop and implement a comprehensive and effective agricultural education program. It is a valuable resource for educators and policymakers who are looking to improve the quality of agricultural education in their schools.

The article also discusses the importance of teacher training and professional development. It highlights the need for ongoing professional development and encourages educators to seek opportunities to learn and grow.

The article concludes with a call to action for educators to be scientific realists and to use their knowledge and skills to make a positive impact on the lives of their students and communities.

RURAL LIFE

The Agricultural Education Magazine, February 1941

THE AGRICULTURAL EDUCATION MAGAZINE

PUBLISHED BY THE ECONOMIC EDUCATION ASSOCIATION

MANAGING EDITOR

J. H. Mitchell, St. Louis, Mo.

ASSOCIATE EDITORS

E. H. Thompson, Champaign, Ill.

R. L. DeLancey, St. Louis, Mo.

C. C. Johnson, Manhattan, Kans.

SPECIAL EDITORS

R. W. Cady, Ames, Iowa

G. E. Davis, Davis, Cal.

P. H. M. Brown, Athens, Ga.

F. A. Press, Washington, D.C.

J. A. McLaughlin, Ithaca, N. Y.

M. I. Horner, New York, N. Y.

S. L. Martin, Athens, Ga.

R. L. DeLancey, St. Louis, Mo.

CONTENTS

Let Us Examine a Tradition

Rural Schools Be Scientific Realists

FARM RATES

How Can We Identify One Prospective Farmer in the

Planning Program of Agricultural Education for Out-of

Opportunities in Farm and Related Occupations: New,

Teaching the Use of the Farm Level in the Farm-Mechanics

Institutional Planning in Farm Mechanization

Approved Practices for Projects in Vocational Agriculture

Book Reviews

Thirteenth National Convention

Gold IEI Members in the National Chapter Contest

Minneapolis Official F.E.F.A. Board

Star American Farmer, 1940

F.E.A. President, 1940-41

360,000 "Bill Dollars" for a Dairy Bull

Book Review

143

146

148

149

150

151

152

153

154

155

156

156

157

157

158

159
A. K. GETMAN
R. W. GREGORY

Professional
Farm Research Narratives
Dairy Cattle Nutrition

G. P. Dayco
Associate Professor of Education, Michigan State College

C. E. HUFFMAN, Research Professor of Dairy Husbandry, Michigan State College

In agriculture as in other fields of human endeavor, it is believed that the future lies not where the past has been knoced into the ground, but where the farmer stands when he considers the results of his experiments, the methods of his research, and the potentialities of experimentation.

The research work in dairy cattle nutrition under the direction of Dr. C. P. Dayco at Michigan State College has been characterized by fine, long-range thinking coupled with the exacting methods of realism. The results have served to bring to light many problems, but they have also led to marked improvements in the field of dairy nutrition.

Agricultural and Research Narratives

Mineral Requirements and Effects From Feeding Minerals

Experiments on mineral requirements and the effects of feeding minerals were started in 1929 and carried on for six years. The cows used were procured as calves and all were of similar breeding. Most of these animals were continued on experiment for the last four years, thereby making it the initial long-term experiment in dairy cattle nutrition in this country. The entire group of cows had an average level of productivity of 9,000 pounds of butterfat in 360-day lactation.

Minerals and proteins are the main components of the diet of all ruminants. The proper balance of these nutrients is essential for optimal growth and health.

One group of animals received a diet containing 15% calcium, 10% phosphorus, and 5% protein. The other group received a diet containing 25% calcium, 15% phosphorus, and 15% protein. The results showed that the calcium:phosphorus ratio in the diet had a significant effect on the growth and health of the animals. The group with a higher calcium:phosphorus ratio had greater growth and better health.

G. P. Dayco

C. E. HUFFMAN

The study of the inorganic elements of the diet of ruminants is of great importance, as these elements affect the growth, development, and health of the animals.

The first experiments in this research project were conducted in 1929, and the results led to the recommendation that cows be fed a diet containing a balanced ratio of calcium and phosphorus.

C. E. HUFFMAN

A lead ration consisting of high-grade Timothy hay, corn silage, and a grain mixture low in calcium (corn, oats, and barley) was continued on experiment over a period of five years. Salt and water were also provided in all experiments.

A lead ration of this composition was used in the experiments, and the results showed that the cows maintained a satisfactory weight gain over a period of five years. The ration was found to be nutritionally adequate for the animals.

C. E. HUFFMAN

The results of the experiments with the high-calcium, low-phosphorus ration were then used in experiments with the low-calcium, high-phosphorus ration. The results showed that the low-calcium, high-phosphorus ration was better than the high-calcium, low-phosphorus ration in terms of growth and health.

C. E. HUFFMAN

The results of the experiments with the high-calcium, low-phosphorus ration were then used in experiments with the low-calcium, high-phosphorus ration. The results showed that the low-calcium, high-phosphorus ration was better than the high-calcium, low-phosphorus ration in terms of growth and health.

C. E. HUFFMAN

The results of the experiments with the high-calcium, low-phosphorus ration were then used in experiments with the low-calcium, high-phosphorus ration. The results showed that the low-calcium, high-phosphorus ration was better than the high-calcium, low-phosphorus ration in terms of growth and health.

C. E. HUFFMAN

The results of the experiments with the high-calcium, low-phosphorus ration were then used in experiments with the low-calcium, high-phosphorus ration. The results showed that the low-calcium, high-phosphorus ration was better than the high-calcium, low-phosphorus ration in terms of growth and health.

C. E. HUFFMAN

The results of the experiments with the high-calcium, low-phosphorus ration were then used in experiments with the low-calcium, high-phosphorus ration. The results showed that the low-calcium, high-phosphorus ration was better than the high-calcium, low-phosphorus ration in terms of growth and health.

C. E. HUFFMAN

The results of the experiments with the high-calcium, low-phosphorus ration were then used in experiments with the low-calcium, high-phosphorus ration. The results showed that the low-calcium, high-phosphorus ration was better than the high-calcium, low-phosphorus ration in terms of growth and health.

C. E. HUFFMAN

The results of the experiments with the high-calcium, low-phosphorus ration were then used in experiments with the low-calcium, high-phosphorus ration. The results showed that the low-calcium, high-phosphorus ration was better than the high-calcium, low-phosphorus ration in terms of growth and health.

C. E. HUFFMAN

The results of the experiments with the high-calcium, low-phosphorus ration were then used in experiments with the low-calcium, high-phosphorus ration. The results showed that the low-calcium, high-phosphorus ration was better than the high-calcium, low-phosphorus ration in terms of growth and health.

C. E. HUFFMAN

The results of the experiments with the high-calcium, low-phosphorus ration were then used in experiments with the low-calcium, high-phosphorus ration. The results showed that the low-calcium, high-phosphorus ration was better than the high-calcium, low-phosphorus ration in terms of growth and health.

C. E. HUFFMAN

The results of the experiments with the high-calcium, low-phosphorus ration were then used in experiments with the low-calcium, high-phosphorus ration. The results showed that the low-calcium, high-phosphorus ration was better than the high-calcium, low-phosphorus ration in terms of growth and health.

C. E. HUFFMAN

The results of the experiments with the high-calcium, low-phosphorus ration were then used in experiments with the low-calcium, high-phosphorus ration. The results showed that the low-calcium, high-phosphorus ration was better than the high-calcium, low-phosphorus ration in terms of growth and health.

C. E. HUFFMAN

The results of the experiments with the high-calcium, low-phosphorus ration were then used in experiments with the low-calcium, high-phosphorus ration. The results showed that the low-calcium, high-phosphorus ration was better than the high-calcium, low-phosphorus ration in terms of growth and health.

C. E. HUFFMAN

The results of the experiments with the high-calcium, low-phosphorus ration were then used in experiments with the low-calcium, high-phosphorus ration. The results showed that the low-calcium, high-phosphorus ration was better than the high-calcium, low-phosphorus ration in terms of growth and health.

C. E. HUFFMAN

The results of the experiments with the high-calcium, low-phosphorus ration were then used in experiments with the low-calcium, high-phosphorus ration. The results showed that the low-calcium, high-phosphorus ration was better than the high-calcium, low-phosphorus ration in terms of growth and health.

C. E. HUFFMAN

The results of the experiments with the high-calcium, low-phosphorus ration were then used in experiments with the low-calcium, high-phosphorus ration. The results showed that the low-calcium, high-phosphorus ration was better than the high-calcium, low-phosphorus ration in terms of growth and health.

C. E. HUFFMAN

The results of the experiments with the high-calcium, low-phosphorus ration were then used in experiments with the low-calcium, high-phosphorus ration. The results showed that the low-calcium, high-phosphorus ration was better than the high-calcium, low-phosphorus ration in terms of growth and health.

C. E. HUFFMAN

The results of the experiments with the high-calcium, low-phosphorus ration were then used in experiments with the low-calcium, high-phosphorus ration. The results showed that the low-calcium, high-phosphorus ration was better than the high-calcium, low-phosphorus ration in terms of growth and health.

C. E. HUFFMAN

The results of the experiments with the high-calcium, low-phosphorus ration were then used in experiments with the low-calcium, high-phosphorus ration. The results showed that the low-calcium, high-phosphorus ration was better than the high-calcium, low-phosphorus ration in terms of growth and health.

C. E. HUFFMAN

The results of the experiments with the high-calcium, low-phosphorus ration were then used in experiments with the low-calcium, high-phosphorus ration. The results showed that the low-calcium, high-phosphorus ration was better than the high-calcium, low-phosphorus ration in terms of growth and health.

C. E. HUFFMAN

The results of the experiments with the high-calcium, low-phosphorus ration were then used in experiments with the low-calcium, high-phosphorus ration. The results showed that the low-calcium, high-phosphorus ration was better than the high-calcium, low-phosphorus ration in terms of growth and health.

C. E. HUFFMAN

The results of the experiments with the high-calcium, low-phosphorus ration were then used in experiments with the low-calcium, high-phosphorus ratio...
How Can We Identify Our Prospective Farmers in the High School?

H. H. Haulein, Teacher Education, Illinois

We are passing out of a period when the future of non-agricultural occupations was dark and gloomy for boys, and when the future of farming was a significant and well-defined topic of discussion. Today, a high school boy who is planning to become a farmer should be aware of the opportunities that exist for him in this field.

One of the problems that high school boys face is the identification of those boys who are most likely to become successful farmers. This identification process is important because it helps in the development of the individual's career plans and future opportunities. The process also assists in the selection of students who are most suited for agricultural education, which is crucial for the preparation of future farmers.

The success of the agricultural education program depends on finding the right students to participate. This involves identifying those boys who have the necessary abilities and interests to become successful farmers. The process of identifying prospective farmers should be based on individual assessment and selection criteria. The criteria should be developed based on the knowledge and experience of educators and agricultural experts.

In conclusion, the identification of prospective farmers is a critical step in ensuring the success of agricultural education and the overall development of the agricultural workforce. It is essential to identify and select the right students who have the potential to become successful farmers, thereby ensuring the future of the agricultural sector.

The Agricultural Educator Magazine, February, 1941

--

The text provided offers insights into the identification of prospective farmers in high schools, emphasizing the importance of selecting students who have the potential to become successful farmers. The process involves individual assessment and selection criteria, guided by educators and agricultural experts. This identification process is crucial for the success of agricultural education and the development of the agricultural workforce.
Setting Up Successful Co-operative Projects

CHESTER LYEING, Teacher, Walla Walla, Washington

In WALLA WALLA we are always up against the problem of the boy who lives in the country and has little money to carry on project work. In answer to this situation the Walla Walla F.F.A. began a savings project, with the result that each chapter has set little sums on account for 40 boys, and in addition has added 12 pigs and a total of $217.25 in cash, the cash being divided among the boys in proportion to the number of weeks that are set on account for the current year. This has been done at a price of $55 each, a total of $1,075.

At the end of four years we found that we had added 40 pigs and a total of $240 to the money thus secured. The boys practically all the time spent in saving, and we wanted that the chapter again came to the aid of the boys at the end of another year.

Since that time we have had the best we could with the boys. We have had a number of F.F.A. boys who have made the F.F.A. a success, with the result that we now have a total of 1,075 pigs, having a total of 40 per chapter. We have had a number of F.F.A. boys who have made the F.F.A. a success, with the result that we now have a total of 1,075 pigs.

The Walla Walla F.F.A. Potato Co-operative

In a very favorable situation for the production of certified seed potatoes. For some years now I have been handling this type of seed, and I have found that the boys are always interested in getting the best available for seed purposes. For this reason, I have handled the potato co-operative, and to make the project a success, two purposes: one, to make money for the boys' chapter, and the other to see that the boys have the best potatoes for seed purposes for some boys. This is the second year we have had this type of project in Walla Walla and have met with considerable success.

After eight years of use I have no doubt of our project. The only difficulty we have is to get all the pigs out good in open country.

The Walla Walla F.F.A. Potato Co-operative

is much more difficult than the sow type, and this is reflected in the prices of the potatoes produced. We were in the project in 1929 and the potatoes were of very good quality, which we are trying to get in the future. The potato crop was grown on a large scale, but it was not very successful. The potatoes were of good quality, but the growing season was rather short, which made it difficult to get the potatoes out of the ground in time.

The potato crop was grown on a large scale, but it was not very successful. The potatoes were of good quality, but the growing season was rather short, which made it difficult to get the potatoes out of the ground in time.

A REGISTERED-SWINE AGREEMENT

The WAH-1118 Blackbellied hog of Future Farmers of America, agrees to give to the Walla Walla F.F.A. Chapter in return for the two 100-lb. pigs, which will be the property of the chapter, after he has fulfilled the requirements of the agreement.

The WAH-1118 F.F.A. Chapter further agrees to furnish transportation for the two pigs to the Walla Walla F.F.A. Chapter, and to return the two pigs, along with the lease, when the boy is ready to sell them.

The WAH-1118 F.F.A. Chapter also agrees to pay the boy for his services in the transportation of the two pigs, and to return the two pigs to the chapter when they are no longer needed.

The Walla Walla F.F.A. Chapter agrees to accept the two pigs in good condition and to return them to the chapter when they are no longer needed.

We, the Walla Walla F.F.A. Chapter, agree to accept the two pigs in good condition and to return them to the chapter when they are no longer needed.

The Walla Walla F.F.A. Chapter, after he has fulfilled the requirements of the agreement, agrees to give to the chapter in return for the two pigs, which will be the property of the chapter, after he has fulfilled the requirements of the agreement.

The Walla Walla F.F.A. Chapter further agrees to furnish transportation for the two pigs to the Walla Walla F.F.A. Chapter, and to return the two pigs, along with the lease, when the boy is ready to sell them.

The Walla Walla F.F.A. Chapter also agrees to pay the boy for his services in the transportation of the two pigs, and to return the two pigs to the chapter when they are no longer needed.

The Walla Walla F.F.A. Chapter agrees to accept the two pigs in good condition and to return them to the chapter when they are no longer needed.

WALLA WALLA CO-OPERATIVE SEED PROJECT AGREEMENT

Purpose: The purpose of this co-operative project shall be to produce certified seed potatoes of the desired variety.

Membership: Each member of this co-operative project shall be a boy taking vocational agriculture courses, who may name his variety name, which shall be the contract sum for each dozen.

Raisers: Shares of $10 each shall be sold to the boys as needed by the F.F.A. Chapter, and the Chapter shall be paid the sum for each dozen.

Production: For each potato plant sold, each member shall be paid $1 for every 100 lbs. of potatoes sold, or $1 for every 100 lbs. of potatoes sold, or $1 for every 100 lbs. of potatoes sold, or $1 for every 100 lbs. of potatoes sold, or $1 for every 100 lbs. of potatoes sold.

Price: The price per potato will be $1 for every 100 lbs. of potatoes.

Profit sharing: The profit per potato will be $1 for every 100 lbs. of potatoes sold.

The Walla Walla F.F.A. Chapter shall be paid $1 for every 100 lbs. of potatoes sold.

The Walla Walla F.F.A. Chapter shall be paid $1 for every 100 lbs. of potatoes sold.

The Walla Walla F.F.A. Chapter shall be paid $1 for every 100 lbs. of potatoes sold.

The Walla Walla F.F.A. Chapter shall be paid $1 for every 100 lbs. of potatoes sold.

The Walla Walla F.F.A. Chapter shall be paid $1 for every 100 lbs. of potatoes sold.

The Walla Walla F.F.A. Chapter shall be paid $1 for every 100 lbs. of potatoes sold.

The Walla Walla F.F.A. Chapter shall be paid $1 for every 100 lbs. of potatoes sold.

The Walla Walla F.F.A. Chapter shall be paid $1 for every 100 lbs. of potatoes sold.

The Walla Walla F.F.A. Chapter shall be paid $1 for every 100 lbs. of potatoes sold.

The Walla Walla F.F.A. Chapter shall be paid $1 for every 100 lbs. of potatoes sold.

The Walla Walla F.F.A. Chapter shall be paid $1 for every 100 lbs. of potatoes sold.
Planning Programs of Agricultural Education for Out-of-School Young Men and Adult Farmers

R. W. GREGORY, Specialist in Post-Time and Evening Schools, U.S. Office of Education

The title of this paper is divided into two parts: "Planning Programs of Agricultural Education for Out-of-School Young Men and Adult Farmers." By dividing the title in this manner, R. W. Gregory, Specialist in Post-Time and Evening Schools, U.S. Office of Education, aims to highlight the focus of the paper, which is on the planning of programs for out-of-school young men and adult farmers. This approach is significant as it acknowledges the diverse needs and experiences of these two groups, providing a comprehensive framework for educators and policymakers.

Prime topics that emerge from the paper include the importance of tailoring educational programs to meet the unique needs of out-of-school young men and adult farmers. Gregory emphasizes the necessity of understanding the contexts in which these groups operate, including the economic, social, and technological landscapes that shape their lives. The paper delves into the challenges of delivering effective education to these segments, suggesting strategies that can enhance learning outcomes and contribute to the development of a more informed and skilled agricultural workforce.

In conclusion, the paper by R. W. Gregory underscores the importance of creating inclusive and adaptable educational programs that cater to the needs of out-of-school young men and adult farmers. By addressing the specific challenges and opportunities presented by these groups, the paper contributes to a broader conversation on the role of agricultural education in addressing contemporary agricultural issues, fostering innovation, and promoting sustainable agricultural practices.

The Agricultural Education Magazine, February, 1941

A Public Education Program

If final results are to be attained in commercial agriculture, the local school authority in each community must support the program. The needs of the individual community will determine the program. The need for a local support group is very important for the education of agricultural students. The local support group will in many cases be the only group that will be interested in the education of agricultural students. The local support group will in many cases be the only group that will be interested in the education of agricultural students. The local support group will in many cases be the only group that will be interested in the education of agricultural students.

Placement and Progressive Establishment

These programs are a part of the school system and they are necessary for the success of the school system. Without proper placement and progressive establishment, the school system will not be able to achieve its objectives. The school system must provide the necessary guidance and support to ensure that students are placed in appropriate programs and that they are able to progress from one program to another. This will help to ensure that students are able to achieve their goals and that the school system is able to meet its objectives.

A Continuing Program

The system of systematic instruction is based on the notion that learning is a continuous process. Not only must it be organized on a year-round basis, but it must also be designed for growth and development throughout the year.

A Comprehensive Program

It is important that the program be comprehensive and that it includes a variety of educational activities. The program should be designed to fit the needs and interests of the students. It should also be designed to fit the needs and interests of the students. It should also be designed to fit the needs and interests of the students. It should also be designed to fit the needs and interests of the students. It should also be designed to fit the needs and interests of the students.

A Planned Program

If a program of agricultural education such as we have been discussing is to be effective, it must be planned and systematically organized. The program must be designed to fit the needs of the students and to fit the needs of the students. The program must be designed to fit the needs of the students and to fit the needs of the students. The program must be designed to fit the needs of the students and to fit the needs of the students.

A Student-centered Program

The program should be such that it becomes increasingly valuable for its own good reasons. Furthermore, the program must be designed to meet the needs of the students and to meet the needs of the students. The program must be designed to meet the needs of the students and to meet the needs of the students. The program must be designed to meet the needs of the students and to meet the needs of the students. The program must be designed to meet the needs of the students and to meet the needs of the students.

Surveying the Local Community

Agricultural education must be based on the needs of the local community. The needs of the local community must be identified, and programs must be developed to meet these needs. The needs of the local community must be identified, and programs must be developed to meet these needs. The needs of the local community must be identified, and programs must be developed to meet these needs.

Guiding Principles

There are a few guiding principles that we follow when planning educational programs. We follow these principles to guide us as we attempt this organization.

The Agricultural Education Magazine, February, 1941

A Principle which is now becoming widely accepted is that the vocational agricultural education should be directed towards the development of the individual's capacity for independent thinking. This principle is based on the belief that the individual is capable of learning and developing his own skills and abilities. The principle is based on the belief that the individual is capable of learning and developing his own skills and abilities. The principle is based on the belief that the individual is capable of learning and developing his own skills and abilities. The principle is based on the belief that the individual is capable of learning and developing his own skills and abilities.
FARM MECHANICS

Teaching the Use of the Farm Level in the Farm Mechanics Course

F. B. Nichols, Temple University High School, Temple, Arkansas

Farming is directly related to the conservation of our natural resources. Not only do we as a people need to realize the importance of soil conservation and, in a strict sense, the conservation of water, but we also need to realize that the highly competitive age it is necessary to secure as high yields as quality and as high as possible. In many sections the use of a farm level is an essential requirement for the establishment of this goal.

It is hard to conceive of a high yield of corn on an irrigated field where the lower men are raised out by the pounding of irrigation water, where the water has been lost short and1 seriously due to lack of moisture penetration, and the remaining one third is a moderate yield of corn with the same amount of water has been used on both. The only difference would be for additional labor to harvest the higher yield on the field where irrigation is necessary to produce any significant agricultural activity in our high schools?

Difficult Work to Teach

The use of a farm level is perhaps the few that we need to be able to read and practice. This is an important field that we need to be able to know how to read a farm level accurately. One of the first things that we need to know is the reading of a farm level. The following three steps are usually taught in Agriculture I and more advanced levels and is the basic level of the farm level that any student is to know as much as possible to do it for as long as he has the ability to do it.

Unit I-Parts of the Instrument and Setting and Adjusting

1. To learn the parts of the instrument and their use.
2. To read and use the tripod, instrument plate on tripod, and instrument leveler on tripod.
3. To read and use the tripod, instrument plate on tripod, and instrument leveler on tripod.

Unit II-Reading and Using a Farm Level

1. To learn the definition and meaning of terms used in a set up of a farm level.
2. To read and use the reference line, reference level, and reference level number.
3. To read and use the reference level number, reference level number, and reference level number.

Unit III-Using a Farm Level on a Farm Field

1. To learn how to use a farm level on a farm field.
2. To read and use the reference line, reference level, and reference level number.
3. To use a farm level on a farm field.

The Agricultural Education Magazine, February, 1941
Approved Practices for Projects in Vocational Agriculture

C. S. ANDERSON

TEACHERS of agricultural education for any grade level should prepare a set of forms for each project on which the pupil's work will be scored. These forms should be made available to the pupil in planning his project. Plans for any of the listed projects are included in the first section of this chapter. These plans are designed to be used in planning the specific objectives and procedures of the project, as well as in scoring the pupil's work. The following procedures are outlined for the pupil's work in making the presentation of the project.

APPROVED PRACTICES IN MAKING A BANANAプロジェクト

TEACHER'S RECORD

Date of Visit

APPROVED PRACTICES

Sowing

1. A small pot is used for sowing. The soil should be well mixed and moist. The seed is planted in the bottom of the pot, with the seedling side up. The pot is then placed in a warm, well-lit location until the seedlings are large enough to transplant.

2. The seedlings are transplanted into larger pots once they are large enough to handle. The soil should be well mixed and moist, and the pots should be placed in a warm, well-lit location.

3. Once the seedlings are well-established, they are transplanted into the ground. The soil should be well mixed and moist, and the plants should be spaced appropriately.

4. The plants should be watered regularly to ensure they receive adequate moisture. The soil should be kept moist, but not waterlogged.

5. The plants should be fertilized regularly to ensure they receive adequate nutrients. The soil should be tested to determine the nutrient levels needed.

6. The plants should be pruned regularly to encourage healthy growth. The stems should be cut back to promote new growth.

7. The plants should be protected from pests and diseases. Pesticides should be used only as necessary and in accordance with label instructions.

8. The plants should be harvested when they are ready. The harvest should be done in a timely manner to ensure the best quality.

In summary, the success of the bananas project is dependent on proper planning, preparation, and maintenance. The project should be well-organized and executed with care to ensure the success of the endeavor.

"The best assistance a teacher can give to a student is to instill the habit of self-direction." - John Dewey

Book Reviews

This book contains a comprehensive view of American farming experiences. It includes a wide range of topics, from the history of farming in the United States to the present-day challenges faced by farmers. The book is well-organized and easy to read, making it an excellent resource for both students and educators.

In conclusion, the book provides valuable insights into the world of farming and is a must-read for anyone interested in agriculture. It is highly recommended for anyone seeking a deeper understanding of American farming experiences.

References

Gold Emblem Winners in the National Chapter Contest®

The opening session of the Thirteenth National Convention of the Future Farmers of America, held at Kansas City, Mo., November 9-10, 1940. Presenting the awards was Mrs. F. A. band, Dr. F. A. Present, seated behind the delegates and officers are American Farmers-elect, members of judging teams, local advisors, and visiting F. A. members.

Fresno, California, October 2

Fresno City is the strip of land opened to the rush of homesteaders in 1929. Until gold was struck in the county, farming was on a substantial basis but with the advent of drilling and high grain prices of 1929, soil fertility was heavily depleted, according to the chapter report.

Among the practices which were encouraged were increased by Fresno City Farmers to bring the farming community up to a high level are the following: weed control, pest control, fertilizing, strawing and other practices. The chapter has a successful practice of using newspapers and barn yards and buildings.

A dairy co-operative bull project was established, using Jersey, Guernsey, and Ayshire sires, the latter purchased by the chapter. Every boy in the chapter planted some kind of temporary or permanent pasture for his livestock, single-grain poultry enterprises were introduced and good feed mixing stock. Pasture rotation was practiced on sheep farms to control diseases.

The chapter promoted buttonhole tessels of all ages belonging to members and their parents and other adults. Cooperative livestock insurance was established by the Future Farmers, and food and purchased co-operatively. A feed grader was purchased and operated by the group as a means of reducing feed stock feeding expenses. Community agricultural programs were planned and presented in five districts around Fresno City during the year, and boys helped to establish high-quality dairy breeding stock.

Clarendon, Texas

In addition to an extensive layout of productive projects, the chapter has a number of well-adapted to the soil and climate of the area projects. Each member is engaged in or grows a variety of crops, and the chapter has taken part in numerous worthwhile cooperative activities. The chapter pooled proceeds of stock, corn, and hog sales, cattle and sheep sales, and other enterprises.

Cooperstown, New York

The chapter worked hard to improve the soil and climate of the area, by the use of improved pastures, fences, and other practices. The chapter has taken part in numerous worthwhile cooperative activities.

Dear Lodge, Montana

Besides many outstanding individual projects, the chapter has a number of well-adapted to the soil and climate of the area projects. Each member is engaged in or grows a variety of crops, and the chapter has taken part in numerous worthwhile cooperative activities. The chapter pooled proceeds of stock, corn, and hog sales, cattle and sheep sales, and other enterprises.

Guernsey, Iowa

In addition to an extensive layout of productive projects, the chapter has a number of well-adapted to the soil and climate of the area projects. Each member is engaged in or grows a variety of crops, and the chapter has taken part in numerous worthwhile cooperative activities. The chapter pooled proceeds of stock, corn, and hog sales, cattle and sheep sales, and other enterprises.

Star American Farmer, 1940

Following the death of his father two years ago, Gerald Royce, Emmett, Arkansas, took over the operation and management of the 600-acre farm, which he now owns in partnership with his son. He had developed Future Farmers projects in corn, potatoes, oats, hay, and the sale of hogs. Under this management, last year the farm showed a good profit.

Reynolds

The new president of the Future Farmers of America is Harold Neidick, Monroe, North Dakota. Among the new officers are: Roy H. Hunt, Vero Beach, Florida; Harold L. Miller, Minneapolis, Minnesota; Donald L. Miller, Kansas City, Missouri; and Earl H. Miller, St. Louis, Missouri. The new president is a member of the National Board of Directors.

F. A. President, 1940-41

I cannot see how any boy who is a student of vocational agriculture can get along without a scrapbook to record his progress. — Reo T. Neidick.

The Agricultural Education Magazine, February, 1941
The "highest price" bull sold in Newton County, Missouri, was bought by the Nodena Chapter of FFA at the price of 350,000 "bull dollars" which were given away by merchants to purchase five "bull dollars" for the purchase of cow shares.

The bull, Windsor Blonde, was sold by Progress Whip of Windsor, whose first 100 dollars produced 3100 more for the Nodena.

The Nodena Chapter covers the bull, each member buying a share in line. Several members are planning to purchase cow shares in the fall. A testing program is also being planned — see Daily, Saturday.

Teaching Farm Level

(Continued from page 33)

R. Placing terms and figures in table form.

These forms and figures are placed in table form as follows:

<table>
<thead>
<tr>
<th>TYPE NOTES FOR FARM LEVEL WORK</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA.</td>
</tr>
<tr>
<td>1. B.M.</td>
</tr>
<tr>
<td>2. T.P.</td>
</tr>
</tbody>
</table>

*KLEV is given in feet. (Formula to follow: B.H. plus H.L. equals M.I.; H.L. minus B.H. equals F.S.)

Things to Note About the Table

1. The first station is called B.M.
2. For any one station, there is a B.S. reading there is no F.S. reading and there is an F.S. reading there is no B.S. reading.
3. H.L. always remains the same until arriving at a T.P.
4. T.P. and the station immediately preceding it being the same point, always have the same elevation.
5. B.S. reading on station 2, now called T.P., is added to the elevation of station 2 to obtain the new H.L. Do not do back sights taken on turning points to the elevation given the bench mark.

The above is simplified forms of the notes kept by regular surveyors and are intended for use in farm leveling only.

College President

DR. LYMAN E. Jackson, Junior Dean of the College of Agriculture, Ohio State University, has been appointed president of the School of Agricultural Science at the University of Wisconsin. He has held the position of dean of the College of Agriculture since 1925.

The Dairy Cattle Nutrition

(Continued from page 34)

Surveying for Meats in Dairy Cattle, Michigan Agricultural Experiment Station, Michigan State College, 1940. (Co-operation with C. W. Zavodny and G. D. Callahan.)

B. Thetis, J. T. Cocker, and J. T. Carpenter. Published by John Wiley & Sons, pp. 112-130, 1928-1929. This book was prepared for the purpose of teaching the demand of teachers, students, and livestock managers for a more accurate and up-to-date textbook on judging dairy cattle. It is a period of more than two years was required to collect the many excellent photographs for this manual, and the collection includes some of the most handsome animals in the various dairy breeds. The requisites that are met include those real judging problems, and the test material discusses these conclusions in such a way as to educate the student to acquire sound judgment based upon the best scientific principles. Students of vocational agriculture and the adult workers will find this text especially helpful in developing skills in judging dairy cattle. A.P.D.

Book Review

Judging Dairy Cattle, text by R. E. Harrison, photography by H. A. Strode, Jr. and J. T. Carpenter. Published by John Wiley & Sons, pp. 112-130, 1950. This book was prepared for the purpose of meeting the demand of teachers, students, and livestock managers for a more accurate and up-to-date textbook on judging dairy cattle. It is a period of more than two years was required to collect the many excellent photographs for this manual, and the collection includes some of the most handsome animals in the various dairy breeds. The requisites that are met include those real judging problems, and the test material discusses these conclusions in such a way as to educate the student to acquire sound judgment based upon the best scientific principles. Students of vocational agriculture and the adult workers will find this text especially helpful in developing skills in judging dairy cattle. A.P.D.

It is just as much a symbol of patriotism to have the nation's schools lighted at night as it is to have the flag flying over them in daylight.—Mark McClellan.