VOCATIONAL agriculture meets every criterion which educators have set up for selecting the types of occupational preparation which should be offered in the schools.

Rural America Today

—University of Chicago Press
Schools Develop a New Philosophy

There is rapidly developing a new philosophy among school people in certain Southern states regarding the plans of schools for dealing with farm and home problems. In brief, this new philosophy is based on the theory that rural schools must not only do the work they are supposed to do, but also assume the responsibility of seeing that all farm families are provided with adequate education.

In some places this connection is already being done in communities where vocational teachers in agriculture and home economics are being employed. Many schools, where facilities for the use of farm families are being provided, are rapidly becoming community service centers. In one state more than 350 community school-owned existing plants are already in operation and are being operated by schools. There is a great need for the use of farm families to accommodate quantities of farm families, vegetables, and fruit for home use. In communities where these plans are located, the schools are not only dealing with problems of how to do the work, but are actually providing facilities in which to do it.

Imagine a farmer walking with a large family, standing over a birdhouse full of summer with a few pots and pans, trying to can enough fruits and vegetables to feed his family properly. Then visit one of these modern school community centers, sitting in a simple chair and see how quickly great communities can be processed. The thousands of farm families that have the facilities of these school plants know their real value. These schools are making it possible for farm families actually to follow the plan and put it into practice the things they learn from organized instruction. Without the facilities of these schools for efficient teaching of farm families would end with what is do. Some might go as far as to learn how to do it. Few, however, would wish to try it unless they have been trained.

In a number of states the facilities of school plants are not being made available for farm people for the purpose of repairing and maintaining their own equipment. In the past few months, thousands of thousands of parts of farm equipment, ranging all the way from motor tractors to the small tools of the craftsman, have been repaired in these school shops. No matter how good a job the craftsman or the farmer himself does on his own repairs, the things he has trouble doing, there would have been no pieces of equipment actually repaired or facilitated because of which to do it.

There are many school communities where voluntary agricultural organizations are being taught that are providing various facilities for use of farm families. In most cases they are meeting a need for a much-needed equipment. These facilities include small crochet plants for planting trees and shrubs, beehives, mowing machines, and other tools for providing adequate education.

The Agricultural Education Magazine

Contents

- Schools Develop a New Philosophy
- The Situation Is Serious
- A Challenging Book
- How Shall I Sell?
- Evacuation of Aliens and Its Effect on Vocational Education
- An Analysis of Swine-Producing Records
- What Is the Nature of Commodity Supply?
- Establishment of Farming
- Adult Education in Missouri
- Improved Supervised Farm Practice
- Methods of Setting Up Projects
- Farm Work and How to Go About It
- A Tobacco Educational Service Program in Farm Mechanization
- Noise Suppression
- The Teaching of the Farm Railroad
- Farm Mechanisation Training Courses for Adult Teachers
- Book Review
- The Montana Farm Mechanics Program
- The Importance of Farm Mechanics
- The Situation Is Serious

By M. D. Muckle

A challenging book

By J. A. McPherson

How Shall I Sell?

By R. C. Ashley

Evacuation of Aliens and Its Effect on Vocational Agriculture

By W. F. Tatton

An Analysis of Swine-Producing Records

By E. L. Belding

What Is the Nature of Commodity Supply?

By H. M. Byam

Establishment of Farming

By H. M. Byam & H. T. Kern

A Tobacco Educational Service Program in Farm Mechanization

By W. C. Dudley

Noise Suppression

By D. M. Muckle

The Teaching of the Farm Railroad

By F. L. Smith

Farm Mechanisation Training Courses for Adult Teachers

By H. A. Whiner

Book Review

By A. P. Davidson

The Montana Farm Mechanics Program

By W. J. Wheeler

The Importance of Farm Mechanics

By G. A. Schmidt

The Situation Is Serious

By M. D. Muckle
Evacuation of Aliens and Its Effect on Vocational Agriculture

Weir F. Fetterson, Regional Supervisor
California State Bureau of Agricultural Education

The effect has been in reductions in numbers of vocational agriculture students in California. The state education commissioner, Mrs. Mabel A. W. Bessey, has informed the state board of education that 28 vocational agriculture students have left the state because of the evacuation of Japanese from California. This reduces the number of vocational agriculture students in California to 9,600, or a decrease of 28 percent from the previous year.

The evacuation of Japanese from California has had a deleterious effect on the state vocational agriculture program. The decrease in the number of students is a direct result of the evacuation order issued by the Department of Justice. The order requires all Japanese persons to leave California and move to the West Coast or other parts of the country.

The evacuation order has caused a great deal of anxiety and confusion among the residents of California. Many Japanese students have been forced to leave their homes and schools and travel to other parts of the country to continue their education. This has caused a great deal of stress and hardship for the students and their families.

In addition to the decrease in the number of students, the evacuation order has also caused a decrease in the number of teachers and staff members in the vocational agriculture program. Many of these individuals have been forced to leave California due to the evacuation order.

The evacuation order has also had an impact on the vocational agriculture program in other states. The federal government has distributed funds to other states to help them establish vocational agriculture programs. However, the funds are limited and are not sufficient to meet the needs of the vocational agriculture program in California.

In conclusion, the evacuation of aliens and its effect on vocational agriculture in California is a serious concern. The decrease in the number of students and teachers is a direct result of the evacuation order, and the program is in need of additional support and resources to continue providing quality education to students.

References

An Analysis of Swine Project Records

RALPH L. BINDER. Instructor in Agricultural Education
The Ohio State University

ICENCY factors are: cost of 100 pounds of pork, returns per one dollar's worth of feed used, labor income per hour, number of pigs raised per year, pounds of pork produced per sow, and pounds of pork produced per pig. It is apparent that we need to know more than the factors, we need to know the facts. Assuming that the records are complete, there is no better place to secure the facts than from the boys in local school department who have conducted swine projects during the past year. Furthermore, these facts will be able to compare the efficiency of an at least a relative basis, even if we do not have an established standard. Here are some facts:

<table>
<thead>
<tr>
<th>Project</th>
<th>Total Cost Per 100 Pounds of Pork</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$6.46</td>
</tr>
<tr>
<td>2</td>
<td>6.3</td>
</tr>
<tr>
<td>3</td>
<td>7.10</td>
</tr>
</tbody>
</table>

We can tell from observation that there were differences in the cost of producing pork in the different projects. Why were there these differences? It seems that we ought to know some of the other facts on efficiency and then associate them with the way to greater success in his farming program.

According to H. G. Kennewick, of Ohio State University, "Individual farming programs can be developed and adjusted only if some rate, adequate records are kept and used properly as at each of the various stages of development. In making up the appropriate decisions connected with selecting, planning, and improving the program, a boy needs to deal with certain facts. Some of these facts are reliable for his own farming program, and some to the farming programs of other boys. Some of these facts need to be recorded statistically so that they can be dealt with rather specifically instead of only in general terms. It is hardly enough for a boy to know and understand the phrase, "growth rate of swine is important. He has to understand and realize the impression that with spending a growing crop of corn and raising some hogs that he has pretty well. He is able to establish definitely the point that for each pork he must make the hogs grow two dollars, or that after making allowance for all forms of production costs, and putting a conservative and prudential value on the hogs' he and his father had earned 50 cents per pound of pork."

Efficiency Factors
Mr. Kennewick inferred that a way to measure efficiency was through the calculation of the following:

1. Cost of pork
2. Returns per one dollar's worth of feed used
3. Labor income per hour
4. Number of pigs raised per year
5. Pounds of pork produced per sow
6. Pounds of pork produced per pig

Table I: A Comparison of 30 Sow and Litter Projects—Camel Winchester—1940

<table>
<thead>
<tr>
<th>Project</th>
<th>Number of Sows</th>
<th>Number of Pigs</th>
<th>Pounds of Pork Produced per Pig of Sow</th>
<th>Pounds of Pork Produced per 100 Pounds of Pork</th>
<th>Labor Income per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>100</td>
<td>$32.40</td>
<td>$324.00</td>
<td>$324.00</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>120</td>
<td>$34.50</td>
<td>$345.00</td>
<td>$345.00</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>150</td>
<td>$36.60</td>
<td>$366.00</td>
<td>$366.00</td>
</tr>
</tbody>
</table>

Table II: A Comparison of Regular Sow and Litter Projects—Canal Winchester—1940

<table>
<thead>
<tr>
<th>Project</th>
<th>Number of Sows</th>
<th>Number of Pigs</th>
<th>Pounds of Pork Produced per Pig of Sow</th>
<th>Pounds of Pork Produced per 100 Pounds of Pork</th>
<th>Labor Income per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>100</td>
<td>$32.40</td>
<td>$324.00</td>
<td>$324.00</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>120</td>
<td>$34.50</td>
<td>$345.00</td>
<td>$345.00</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>150</td>
<td>$36.60</td>
<td>$366.00</td>
<td>$366.00</td>
</tr>
</tbody>
</table>

Table III: Some Factors Influencing Differences in Sow and Litter Projects

<table>
<thead>
<tr>
<th>Project</th>
<th>Number of Sows</th>
<th>Number of Pigs</th>
<th>Pounds of Pork Produced per Pig of Sow</th>
<th>Pounds of Pork Produced per 100 Pounds of Pork</th>
<th>Labor Income per Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>100</td>
<td>$32.40</td>
<td>$324.00</td>
<td>$324.00</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>120</td>
<td>$34.50</td>
<td>$345.00</td>
<td>$345.00</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>150</td>
<td>$36.60</td>
<td>$366.00</td>
<td>$366.00</td>
</tr>
</tbody>
</table>

Table IV: Relationship of Returns Per $1 Worth of Feed Used in the Breeding to Marketing Period to Other Efficiency Score in Fighting 37 Sow and Litter Projects—Canal Winchester School

<table>
<thead>
<tr>
<th>Project</th>
<th>Efficiency Score</th>
<th>Returns per $1 Worth of Feed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>$1.40</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>$1.77</td>
</tr>
<tr>
<td>3</td>
<td>70</td>
<td>$2.14</td>
</tr>
</tbody>
</table>

Conclusions

Efficiency and accuracy are important in the evaluation of swine projects. Efficiency factors such as cost of pork, returns per one dollar's worth of feed used, labor income per hour, number of pigs raised per year, pounds of pork produced per sow, and pounds of pork produced per pig are crucial. These factors help to determine the efficiency of the projects and provide a basis for comparing them. Efficiency factors are more significant than the mere production of pork, as evidenced by the higher labor income per hour in Project 3. The projects that focus on efficient practices, such as Project 3, are likely to be more successful in the long run. Efficiency is not just about the quantity of pork produced but also the quality of labor engagement and the return on investment per dollar spent on feed. By considering these factors, farmers and educators can better understand the needs and strategies for improving swine projects and foster greater success in farming programs.
Supervised Practice Programs Assist in Farming

HENRY M. DAVIS, Teacher and Principal, Bethelville, Virginia

W. Some of the most interesting social developments that have taken place in the past year are the new interest in farming and the increasing number of boys who are taking up farming as a career. This interest is due to the fact that farming is a very important industry in our country and that it is a field which offers many opportunities for advancement.

The purpose of the supervised practice programs is to provide these boys with practical experience in the various phases of farming. These programs offer boys the opportunity to learn the skills necessary to become successful farmers and also to develop their own personal qualities such as responsibility and decision-making ability.

In addition, the programs provide an excellent opportunity for boys to socialize with other boys who are interested in agriculture. This helps to build a sense of community and encourages teamwork among the boys.

The success of the programs depends on the support of the local communities and the cooperation of the farmers. Therefore, it is important that we continue to work towards increasing the participation of boys in these programs.

Supervised Practice and Establishment in Farming

The agricultural instructors of the schools have found that the supervised practice programs are very beneficial to the boys. They provide the boys with the opportunity to learn practical skills and also to develop their personal qualities.

The programs also encourage the boys to take an active interest in farming and to consider it as a career. This is important because farming is a very important industry in our country and offers many opportunities for advancement.

In conclusion, the supervised practice programs are an excellent way to help boys develop their skills and prepare for a career in agriculture. These programs provide an excellent opportunity for boys to learn practical skills and also to develop their personal qualities.

Methods of Setting Up Projects

C. R. ROBB, Teacher, Hillbrook, Texas

Each fall when school opens the first-year boy’s project is due. To make sure there is no confusion about the project, the following guidelines are provided:

1. Livestock or poultry: a. Cows b. Swine (both beef and pork) c. Chickens

These guidelines are intended to ensure that all boys are clear about the requirements of the project and that the projects are completed on time.

In the next issue of this magazine, we will provide a detailed report on the progress of the projects and the achievements of the boys in their specific areas of interest.
Farmer Classes

From Where They Are to Where They Want to Be

H. M. BYRAM, Teacher Education, East Lansing, Michigan, and T. H. KERRY, Superintending Teacher, Olmsted, Michigan

In development of farming programs with an out-of-school young man the first question which should be considered is: What is this young man's farming status and how far has he progressed in farming? Having determined these the next step should be to ascertain the nature of his previous instruction, how much he has been exposed to the activities "before and after" the course, or such things as "number of father-in-law farm partners developed," the revised version of a formative evaluation given in this issue with the individual within the given farming status. Such progress may involve learning to raise smiley, livestock, feed, or equipment; or it may involve improvement of some stage of farming with which the young farmer is connected.

T. H. KENY, M. Byram

In development of farming programs with an out-of-school young man the first question which should be considered is: What is this young man's farming status and how far has he progressed in farming? Having determined these the next step should be to ascertain the nature of his previous instruction, how much he has been exposed to the activities "before and after" the course, or such things as "number of father-in-law farm partners developed," the revised version of a formative evaluation given in this issue with the individual within the given farming status. Such progress may involve learning to raise smiley, livestock, feed, or equipment; or it may involve improvement of some stage of farming with which the young farmer is connected.

Progress Within a Farming Status

What does this aim mean when applied to actual cases? Suppose that half of the membership enrolled in young farmers classes are working on farms at home. Most of these young men would be making progress toward a higher status if they were to invest some money in one or more enterprises and would conduct them profitably. We should expect at least half of the class to carry on productive enterprise projects as a part of their supervised practice. Eventually these young men, if they are to make further progress, should look forward either to the development of a farm partnership or to becoming an operator of an entire farm, probably as a renter.

From present sources of data it is not easy to ascertain how well the supervised farming programs of students in young farmers classes reflect the aim of "progress within a farming status or toward a higher status." State and Federal reports do not call for the type of data which would show farming status "before and after" the course, or such things as "number of father-in-law farm partners developed," the revised version of a formative evaluation given in this issue with the individual within the given farming status. Such progress may involve learning to raise smiley, livestock, feed, or equipment; or it may involve improvement of some stage of farming with which the young farmer is connected.

Variedity in Farming Status Shown by Surveys

Why surveys of out-of-school young men on farms above, however, that the young farmer group is very heterogeneous as to farming status and that surveys of a more 7.6% of those surveyed. The socio-economic data are the most varied groups. These differences may be considerable.

The extent to which young farmers represented in this survey may be said to the mean of the groups as far as farming status is concerned is of any further groups with whom the teacher of agriculture works in any other way. Progressive establishment in farming is one aim of instruction of young farmer classes recognized by most leaders in agricultural education as of great importance. Young men who voluntarily enroll in systematic instruction for farming usually do so because they believe that such instruction may give them some help in making progress from where they are to a desired goal.
A Threefold Agricultural Defense Program in Farm Mechanics

W. C. DUDLEY, Teacher, Appomattox, Virginia

If I had not been able to use the agricultural shop to repair my farm machinery, I would not have been able to meet my production goals for this year. This statement was made by one of the 18 farmers who participated in the farm-machinery repair program at Rostberg, Virginia, in describing the usefulness of the school shop to the community. He continued by saying that the reaction of the entire group and summaries of one phase of the threefold farm mechanics program being promoted by J. R. Gardner, teacher of agriculture. In addition to the repair program for farmers the Rostberg department of vocational agriculture is conducting an active farm-machinery repair program thru its all-farm classes and a national defense preemployment class in metalwork.

Farmers Do Their Work

Farmers are enrolled in the farm machinery repair course with the understanding that they are to do all of the repair work with the technical advice of the instructor. Jobs which require special skill are done by the defense class and are handled in such a way that the regular regulars of this class is not disturbed. Systematic procedures such as cleaning the machine, the training parts for wear, and laying new parts required, in following the same plan as for hoes, hoes, plows, and tools are further details.

Emphasis is placed on farm-machinery repair as a defensive measure or as a means of producing food for freedom, both in the school and in rural classes. In February, March, and April has been devoted to more than three machines.

March 1943. This issue has been held to more than three machines.

Farm Mechanics

L. R. POLOM

Outing of the Shop Rat

When I began teaching vocational agriculture I constructed my farm shop like a few others with which I was familiar. We did rough work, adding, building a few in the form of barns, sheds, and fences, and did the many other little jobs that usually come to the farm shop. If the boys worked in the shop two days a week they soon ran out of something to do.

New Types Shop Course

Feeling that this type of shop work was too inadequate for the farm boy, I decided to change the shop into one which would be more practical to the farm boy. My shop was like many others in that the shop was the back room and the class were held in the front. In the last two years the same students have been in the classes, but the room and the class were held in the front. In the last two years the same students have been in the classes, but the room and the shop have been held in the same room, and the entire room, which is 24 by 30 feet, is available to the shop and the class are held in another room.

Organization of Class Work

The plan for the shop work is now organized on the principle of the farm workers and the farm shop and I have tried to make a creative shop for the junior and seniors. In the freshman and sophomore years the boys are very busy, making and repairing many little tools. Part of this work is done by the boys alone and part of it is done by the students in the form of demonstrations. The junior and senior years are devoted to making and repairing one tool each semester, which gives the boys an opportunity to work in the shop. The boys must bring in work to do in the shop and I have found that if I have a good number of farm implements which I have repaired, and the fact that one of the boys now too farm shop of their own.

Kind of Work Done

We do the shop work in a way that is similar to the way it would be done on the farm. A boy cannot make a chair, but he can make a chair, but he can make a chair for the junior and seniors. In the freshman and junior years the boys were busy, making and repairing many little tools. Part of this work is done by the boys alone and part of it is done by the students in the form of demonstrations. The junior and senior years are devoted to making and repairing one tool each semester, which gives the boys an opportunity to work in the shop. The boys must bring in work to do in the shop and I have found that if I have a good number of farm implements which I have repaired, and the fact that one of the boys now too farm shop of their own.

Farm Mechanics Training Courses for Idaho Students

H. A. WINNER, Teacher Education Moscow, Idaho

In order that the vocational instructors in Idaho may be of more service to their students, the State Department of Vocational Education arranged for the four Farm Mechanics Schools throughout southern Idaho this past winter. These schools were held from June 8 to June 26.

The courses were given at Star City, Firth, Dowser, Jerome, and Meridian, by instructors who had been trained with the Out-of-School Youth Program sponsored by the National Education Association. The course was to include the operation, care and repair of farm implements, and machinery, and to be conducted by the instructors and the students in the shop and on the farm.

Boys Enjoy Work

I find that the boys enjoy this work and that the work in the shop is not the work that has been repaired which otherwise would not be done. The boys are most interested in the work they have to do and the boys are very interested in the work they have to do. The boys are very interested in the work they have to do and they are very interested in the work they have to do.
The Montana Farm Mechanics Program

Mr. Welker's experience as a vocational agriculture shop instructor in high school and as an instructor of advanced farm shop students during their summer school sessions caused him to question the extent to which the vocational farm mechanics program in the home rooms of the Montana State University. This problem of "carry-over" was studied by Mr. Welker during the summer school sessions. He found that the home room students who did not have time to work on a home farm shop project were also interested in this type of work. The results of his study indicated that the home room students who did not have time to work on a home farm shop project were also interested in this type of work.

In the case of the Montana Farm Mechanics Program, the home room students who did not have time to work on a home farm shop project were also interested in this type of work. The results of Mr. Welker's study indicated that the home room students who did not have time to work on a home farm shop project were also interested in this type of work.

Table 1. Total Number and Relative Importance of Student Experiences in 14 Types of Farm Shop Work in 11 Depart- mental Vocational Agricultural programs

<table>
<thead>
<tr>
<th>Type of Activity</th>
<th>Total Number</th>
<th>Relative Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tool sharpening</td>
<td>1246</td>
<td>1</td>
</tr>
<tr>
<td>2. Carpentry & woodworking</td>
<td>1000</td>
<td>0.9</td>
</tr>
<tr>
<td>3. Fertilizing</td>
<td>766</td>
<td>0.7</td>
</tr>
<tr>
<td>4. Soldering & cold metal</td>
<td>676</td>
<td>0.6</td>
</tr>
<tr>
<td>5. Roofing</td>
<td>177</td>
<td>0.15</td>
</tr>
<tr>
<td>6. Drawing & bills of material</td>
<td>444</td>
<td>0.4</td>
</tr>
<tr>
<td>7. Canning</td>
<td>353</td>
<td>0.35</td>
</tr>
<tr>
<td>8. Gas engine & tractor repair</td>
<td>304</td>
<td>0.3</td>
</tr>
<tr>
<td>9. Farm machinery repair</td>
<td>176</td>
<td>0.17</td>
</tr>
<tr>
<td>10. Concrete & masonry</td>
<td>117</td>
<td>0.11</td>
</tr>
<tr>
<td>11. Plastic & metal</td>
<td>123</td>
<td>0.12</td>
</tr>
<tr>
<td>12. Electrical wiring</td>
<td>60</td>
<td>0.06</td>
</tr>
</tbody>
</table>

*From Table II, Column I, and Table I, Crop, of the Sutherland study.

In the case of the Montana Farm Mechanics Program, the home room students who did not have time to work on a home farm shop project were also interested in this type of work. The results of Mr. Welker's study indicated that the home room students who did not have time to work on a home farm shop project were also interested in this type of work.

Table 2. Total Number and Relative Importance of Student Experiences in 14 Types of Farm Shop Work in 11 Departmental Vocational Agricultural programs

<table>
<thead>
<tr>
<th>Type of Activity</th>
<th>Total Number</th>
<th>Relative Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tool sharpening</td>
<td>1246</td>
<td>1</td>
</tr>
<tr>
<td>2. Carpentry & woodworking</td>
<td>1000</td>
<td>0.9</td>
</tr>
<tr>
<td>3. Fertilizing</td>
<td>766</td>
<td>0.7</td>
</tr>
<tr>
<td>4. Soldering & cold metal</td>
<td>676</td>
<td>0.6</td>
</tr>
<tr>
<td>5. Roofing</td>
<td>177</td>
<td>0.15</td>
</tr>
<tr>
<td>6. Drawing & bills of material</td>
<td>444</td>
<td>0.4</td>
</tr>
<tr>
<td>7. Canning</td>
<td>353</td>
<td>0.35</td>
</tr>
<tr>
<td>8. Gas engine & tractor repair</td>
<td>304</td>
<td>0.3</td>
</tr>
<tr>
<td>9. Farm machinery repair</td>
<td>176</td>
<td>0.17</td>
</tr>
<tr>
<td>10. Concrete & masonry</td>
<td>117</td>
<td>0.11</td>
</tr>
<tr>
<td>11. Plastic & metal</td>
<td>123</td>
<td>0.12</td>
</tr>
<tr>
<td>12. Electrical wiring</td>
<td>60</td>
<td>0.06</td>
</tr>
</tbody>
</table>

*From Table II, Column I, and Table I, Crop, of the Sutherland study.
Future Farmers of America
A. W. TENNEY

Fort Collins F.F.A. Boys Are Helping to Win the War
G. A. SCHMIDT, Teacher Educators, Colorado State College

They are producing the kinds of crops encouraged and asked for by the Government to meet general wartime needs. A summary of their crop projects may be found in Table I. A very conservative valuation of the produce from 15 Farmers F.F.A. boys in their crop project is $7,900. One item of produce above average, namely, 45 tons of sugar, is going to supply hundreds of our soldiers with this essential food material.

Methods of Setting Up Projects

Increasing the Swiss Program
Mr. Duffy also submits the following item: "It is likely that 10 more head of registered swine will be purchased by some of these boys before the close of school. This will involve five boys who do not at present have swine projects and five others who do have swine projects. If this plan is carried out, 19 of the Fort Collins High School boys will own 22 head of breeding swine at the close of school." That means eventually these young high-school boys will produce enough pork products to supply hundreds of our soldiers.

Other Activities
Along with this record of food production, other projects are doing many other interesting things. They have collected and sold 4,200 pounds of scrap iron, 650 pounds of old rubber, and 220 pounds of scrap copper. Not only are these boys producing, conserving, and saving, but at the same time their nation's great need but they are also learning many other important things. These activities are steadily developing to train the next, or perhaps the new, generation of America farmers and fine American citizens.

In the eyes of teachers, this is considered to be a very important aspect of the F.F.A. boys in Fort Collins have made.

Plan for the Show
This year the third show of its kind was held at the Idaho State Fair in Boise. The F.F.A. boys exhibited and handled $7700. Stock which is graded and shown by the boys includes beef, sheep, and hogs. Animals are divided into four classes: Choice, Good, Average, and Unfit. No grand champion is shown at the annual fair.

The first day of the show all animals are graded and classified. The Second Day of the Show is open to the public, and all animals are put on exhibit and auctioned to the highest bidder.

The boys received line support this year from individuals and concerns that were buying.

The Montana Farm Program
A feature of the show each year, and one that makes the show possible, is the auctioning of the top prime lamb several times during the sale. The boys exhibiting the lambs receive the amount for the first sale, and then the lamb is put up for resale at various times during the auction of livestock.

This year a prime 90-pound lamb owned by Ken Milligan of Idaho Falls brought $732 per hundred for its owner, and a round 79 pounds of the sale for a total of $1004.56, which will be used to finance the shows in 1945. Each person buying the lamb turns it back to the auction, and in turn receives a number

which entitled him to a chance on the drawing for the lamb after the last sale was completed.

Burk Clarke of the St. Anthony F.F.A. Chapter exhibited the prime Shorthorn steer, which brought a top price of $34.60 per hundred. In the hog division, Dale Sloop received the top price of $20 per hundred.

All animals sold at the show this year brought well above market price. Selling by packing company and individuals pushed the price up in many instances.

Mr. Gardner, one of the original committee members and now Farm Security Supervisor at Burley, Idaho, presented a large logo cup for the chapter having the best representative exhibit in all divisions. The Idaho Falls chapter, under the supervision of Mr. Emery Howard, was awarded the cup, and the Blackfoot chapter, under the supervision of Alfred Funk, placed second.

Tentative dates for the show for 1943 have been set for May 4-5.

Mr. F. A. A. boys getting animals ready for show ring

which entitled him to a chance on the drawing for the lamb after the last sale was completed.

Burk Clarke of the St. Anthony F.F.A. Chapter exhibited the prime Shorthorn steer, which brought a top price of $34.60 per hundred. In the hog division, Dale Sloop received the top price of $20 per hundred.

All animals sold at the show this year brought well above market price. Selling by packing company and individuals pushed the price up in many instances.

Mr. Gardner, one of the original committee members and now Farm Security Supervisor at Burley, Idaho, presented a large logo cup for the chapter having the best representative exhibit in all divisions. The Idaho Falls chapter, under the supervision of Mr. Emery Howard, was awarded the cup, and the Blackfoot chapter, under the supervision of Alfred Funk, placed second.

Tentative dates for the show for 1943 have been set for May 4-5.
From Where They Are to Where They Want to Be

Illustrative Case

Two examples may help to illustrate how this chart might be applied to an individual case. Two young men, who enrolled as members of a young farmers' club in Ohio, were faced with the problem of finding a job for student-studying which was established last fall year and where a part-time job had not been obtained the previous year.

Kenneth King, age 18, dropped out of school during the ninth grade. A year later he enrolled in the vocational agriculture program at a local school. Since vocational agriculture is offered in Michigan schools before the 9th grade, Kenneth graduated before the school year's end. He obtained a part-time job as a lab assistant at the university. While attending the university, he worked in the lab and found a job at a local farm. He was soon hired as a farmhand and later promoted to a supervisory position.

Vincent Stapes, age 18, was graduated from high school in 1965. He was accepted into the University of Michigan's graduate program in agricultural economics. During his time at the university, he was involved in several research projects and published papers on agricultural economics. He later obtained a job at a local university as an assistant professor, where he continues to work and conduct research.

An Analysis of Swine Project Records

The following table shows a summary of the swine project records for the past two years. The data includes the number of pigs slaughtered, the average weight at slaughter, and the gross income per pig.

<table>
<thead>
<tr>
<th>Year</th>
<th>Pigs Slaughtered</th>
<th>Average Weight</th>
<th>Gross Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>2022</td>
<td>1200</td>
<td>200 kg</td>
<td>$24000</td>
</tr>
<tr>
<td>2021</td>
<td>1000</td>
<td>180 kg</td>
<td>$22000</td>
</tr>
</tbody>
</table>

In summary, the swine project records show a consistent increase in the number of pigs slaughtered and a corresponding increase in the average weight and gross income per pig.

General Conclusions

As a result of analyzing the data, the project has several important conclusions:

1. The project has shown a consistent increase in the number of pigs slaughtered, the average weight at slaughter, and the gross income per pig.
2. The project has demonstrated the importance of careful record-keeping and analysis in improving the efficiency of the swine project.
3. The project highlights the need for continuous improvement and innovation to remain competitive in the agricultural industry.
4. The project has demonstrated the benefits of using technology and modern farming practices to increase productivity and profitability.