Pedagogically speaking,
the difference between a rut and
a grave is merely a matter of time.
Teacher-Training Ahead

PREREQUISITE materials on the professional preparation of students for teaching in the primary and secondary grades are the basis of an article by Dr. C. E. Blake, Director of the New York State College of Education. The article discusses the importance of these materials in the training of teachers, and emphasizes the need for continuous improvement in the quality of teacher-training programs.

Developing Successful Partnerships: Agreements in Threes

Professor E. B. Hill and Professor L. H. Boone

Our Leadership in Agricultural Education

Dr. Charles Homer Lan

Teaching Students How to Organize Farm Work to Save Time and Effort

Professor L. S. Hinds

Subject Matter Problems

A. J. Paulus

Determining Educational Needs for Students in Project Records

H. P. Swann

Planning Postwar Instruction for Young Farmers

R. B. Dickson

Looking Ahead in Farm Mechanization

J. R. Callow

Caretors for Evaluating Programs of Preparation of Teachers of Vocational Agriculture

L. R. Humphrey

Interest in the F.A.A. Chapter

C. D. Watson

Co-operative Marketing of Turkeys

56

Banquet Banter

58

Improved Student Teaching

In the chief responsibility of teacher-training departments, the preparation of students for their jobs as teachers, there are two major areas to be considered: (1) the experiences provided the student in the professional area, including both courses and participation in practice or student teaching; and (2) the preparation of the student for his job in the classroom and technical areas of the subject matter.

Improved Technical Preparations

The cry of need of teachers of agriculture generally is for more and better trained teachers to make the best possible use of the knowledge of practical agriculture. Remarks supporting this include: "I learned more practical agriculture in my officer in the training school than in any two years of college," and "I learned more about farming in my first two years on the job than I did in my entire college course." As a basis for our procedure in this area, we have the benefit of Roush's dissertation which was most revealing even the conducted under the handicap of approaching wartime conditions. His study dealt with the measurement of abilities in technical agriculture attained by the trainees previous to their quarter of student teaching.

In brief, his study determined the performance of six types of abilities adjusted essential to all teachers in seven areas of applied agriculture and then to ascertain what of these abilities a teacher possessed to a satisfactory degree. In the dissertation the scope was limited to determining the degree of student performance abilities every trainee had in the over area and determining all the types of abilities the teachers possessed in the one period area of state management. At the beginning of their quarter of student teaching the trainees gave the information from which were interpreted the abilities that they possessed in the various areas. Detailed findings are irrelevant. Suffice it to say that on the average these prospective teachers possessed to an approved degree only 51 percent of the 575 required ability levels adjusted essential. The performance test weak, of course, have been favorable but it has been given at graduation. Nevertheless improvement needs to be made.

We are approaching this problem of improving our trainees in technical information by holding conferences to the staff, in agricultural education, college administrators and with each departmental staff at the college. The reaction on the part of each and every department has been favorable. The degree of improvement in the technical fields is indicated by the following propositions:

1. Providing trainees, as early as they elect their major in agricultural education, with an appropriate list of abilities needed by teachers of vocational agriculture to give purpose to their college courses and to encourage desirable self-education to the other selected farm experiences in summer.

2. The elimination of all non-technical courses, for example, "Milk Secretion" is removed as a prerequisite to "Dairy Cattle Management."

3. The inclusion of additional technical courses in the vocational curriculum: for example, "Construction of Labor-saving Devices" is suggested for Agricultural Engineering.

4. Changes in the content of technical courses offered to include more information useful in the development of vocational agriculture; for example, laboratory work in machinery repair will be introduced in Agricultural Engineering to enable to teach tasks such as driving and controlling in animals Handling.

5. Offering certain courses in sections catalogued as "For prospective teachers of vocational agriculture," one or two quarters each year; for example, the course of "Animal Breeding" open only to prospective teachers.

6. Improvement in the methods of teaching technical courses.

7. The offering of more special courses, one-half term in length, during the summer months to long summer months of vocational agriculture.

8. The offering of special training by extension specialists and college instructors for groups of teachers in the state, such offerings to include one or two sessions held week ends or during the summer.

Additional ways and means may be suggested but at present these have been definitely considered. Combined with the excellent attitude on the part of each departmental staff there is promise of very significant improvement.
Developing Successful Partnership Agreements in Farming

PROF. E. B. HILL and PROF. L. H. BROWN
Department of Farm Management, Michigan State College

Essentials to Successful Partnerships:

1. Are the partners ready for partnership?
 Under wartime conditions, many farmers and non-farmers are ready to go into farming, but hesitate to make many changes because they believe their transition is too large. If a partnership is to be formed under the conditions where partnership is a system, there must be a large number of farms interested in the partnership.

2. What is the purpose of the partnership?
 Various purposes can be stated, such as buying and selling, or processing the crops. The final purpose of the partnership is to make a profit for the investors.

3. What are the responsibilities of the partners?
 The responsibilities of the partners include the financial aspect, the labor aspect, and the management aspect.

4. How will the partnership be operated?
 The operation of the partnership will depend on the specific needs of the partners.

5. What are the rights and privileges of the partners?
 The rights and privileges of the partners include the right to receive a share of the profits, the right to receive a share of the losses, and the right to receive a share of the assets if the partnership is dissolved.

6. How will the partnership be dissolved?
 The partnership will be dissolved when the partners agree to dissolve it, or when the partnership is declared illegal or invalid.

7. How will the partnership be terminated?
 The partnership will be terminated when the partners agree to terminate it, or when the partnership is declared illegal or invalid.

8. How will the partnership be financed?
 The partnership will be financed by the partners' capital contributions, loans, and any other sources of financing.

9. How will the partnership be managed?
 The partnership will be managed by the partners, or by a manager or manager appointed by the partners.

10. How will the partnership be regulated?
 The partnership will be regulated by the partnership agreement, or by the laws of the state or country where the partnership is located.

Our Leadership in Agricultural Education

This article opens a series of presentations of some of our leaders in agricultural education. This series will be of interest to all who are concerned with the development of agricultural education, particularly teachers of vocational agriculture, administrators, or others who are interested in the field of agricultural education. It is hoped that these presentations will further our work to develop a better professional group in the field of agricultural education.

Dr. Charles Homer Lane, Professor of Agricultural Education, died Sunday, June 16 in the University Hospital, Providence, R. I. He was 70 years old. He was a pioneer in the development of a system of agricultural education, and his death followed a prolonged illness during which he had been confined to his home.

Dr. C. H. Lane

Vocational agriculture has become firmly established in an agency of service to the agricultural educational system. Its leaders and the efforts of their organizations have created a system of vocational agriculture. Dr. Charles Homer Lane pioneered in the field of agricultural education. He was the founder of the nation's first vocational agriculture program. He was the first to realize the potential of vocational agriculture as a means of preparing young men for the agricultural profession.

Dr. Homer Lane was born in 1877 in Boston, Mass. He received his A.B. degree from the University of Wisconsin in 1900, and his M.A. degree from the University of Illinois in 1901. He taught at the University of Wisconsin for 15 years before becoming the head of the Department of Agricultural Education at the State University of Iowa in 1916. He served as the head of the Department of Agricultural Education at the State University of Iowa until his retirement in 1946. He was a member of the Phi Kappa Phi, Alpha Zeta, the College Club, and the American Vocational Association.

Dr. Homer Lane was a member of the American Association of Agricultural College Teachers, the American Vocational Association, and the National Agricultural Education Association. He was the author of several books and articles on the subject of agricultural education. He was the editor of the Journal of Agricultural Education, and the editor of the Journal of Agricultural Research.
Teaching Students How to Organize Farm Work to Save Time and Effort

LLOWELL S. HARDIN, West Project Director, Purdue University, Lafayette, Indiana

Farmers do not have to work to save time and labor, especially on farms that have economies of scale. However, the amount of labor and machinery used can be reduced by planning carefully. This plan outlines ways of using their time and labor more efficiently. The plans developed for the following types of farming operations: the setting up of the farm, the farming of crops, and the care of livestock. The plans provide detailed instructions on the best practices for each type of farming operation.

Principles of Work Scheduling

Application of Principles

Job Analysis

Job Analysis Chart

The chart is used to show the different tasks that need to be performed by the farmer and his family. Each task is listed with an indication of the amount of time needed to complete it. The chart also indicates the order in which the tasks should be completed.

Job Analysis in Detail

The detailed job analysis outlines the specific tasks that need to be performed and the time required for each task. The chart includes instructions on how to perform each task and how to measure the time spent on each task.

Scheduling the Work

The scheduling of the work is done to ensure that the tasks are completed in the most efficient manner possible. The chart indicates the order in which the tasks should be completed and the time required for each task. The chart also indicates the tasks that can be performed concurrently.

The chart is used to plan the work of the farmer and his family. The chart is updated regularly to reflect changes in the farm's operations.
Farming Programs

C. L. ANGERSER

Determining Educational Needs of Students Through Analysis of Project Records

H. P. SWEANY, Teacher Educator, Michigan State College, East Lansing, Michigan

How many of us teachers have had our pupils say, "We've had that before!" I was brought up on a farm and I can still hear those words. I heard them often during my youth. The amount of work necessary to run a farm, the knowledge and planning required, were often the same experience to me so that I have come to think it is a more or less common experience of both beginning and experienced teachers. Teachers who use the cross-sectional method of instruction or teach ourselves seasonally may encounter this difficulty much more than the teacher who "completed" an enterprise as one large, continuous, unit on some single or multifactor problem, which follows a pattern.

Identification of Specific Needs Motivates Study

If from a student's point of view it seems that the subject matter is a meaningless, repetitive, the teacher must plan approach in such a way that it becomes interesting and challenges the student. Analysis of project records for specific crops may find problems which are in the student's own experience. An additional study is presented here as a teaching device to help the student realize the relationship of his experiences to some further study and thus a feeling of need is developed is the main purpose of the work. A better understanding of some aspects of agriculture will be needed for the student as the basic interest in the subject develops.

Analysis of Pig Weights Suggests Problems for Study

Four students in one high school secured litter weights when the pigs were 56 days old and when they were 28 days old. These data are shown in Table I. In its present form the data reveal that the weights were almost identical at the two ages. It will be noted that the pounds of feed consumed by small litters up to weaning time is high per pig. It requires more feed to rear the same number of pigs, but there are several possible explanations for the small variation in the weights of pigs raised per sow. Some are listed here to show the possibilities which should be considered in attempting to determine the cause of the results shown. They are:

1. Illnesses occurred when feed was not fresh.
2. Illnesses occurred when feeding was not equal.
3. Illnesses occurred when feeding was not equal.
4. Illnesses occurred when feeding was not equal.
5. Illnesses occurred when feeding was not equal.
6. Illnesses occurred when feeding was not equal.
7. Illnesses occurred when feeding was not equal.
8. Illnesses occurred when feeding was not equal.
9. Illnesses occurred when feeding was not equal.
10. Illnesses occurred when feeding was not equal.
11. Illnesses occurred when feeding was not equal.
12. Illnesses occurred when feeding was not equal.
13. Illnesses occurred when feeding was not equal.
14. Illnesses occurred when feeding was not equal.
15. Illnesses occurred when feeding was not equal.
16. Illnesses occurred when feeding was not equal.
17. Illnesses occurred when feeding was not equal.
18. Illnesses occurred when feeding was not equal.
19. Illnesses occurred when feeding was not equal.
20. Illnesses occurred when feeding was not equal.
21. Illnesses occurred when feeding was not equal.
22. Illnesses occurred when feeding was not equal.
23. Illnesses occurred when feeding was not equal.
24. Illnesses occurred when feeding was not equal.
25. Illnesses occurred when feeding was not equal.
26. Illnesses occurred when feeding was not equal.
27. Illnesses occurred when feeding was not equal.
28. Illnesses occurred when feeding was not equal.
29. Illnesses occurred when feeding was not equal.
30. Illnesses occurred when feeding was not equal.
31. Illnesses occurred when feeding was not equal.
32. Illnesses occurred when feeding was not equal.
33. Illnesses occurred when feeding was not equal.
34. Illnesses occurred when feeding was not equal.
35. Illnesses occurred when feeding was not equal.
36. Illnesses occurred when feeding was not equal.
37. Illnesses occurred when feeding was not equal.
38. Illnesses occurred when feeding was not equal.
39. Illnesses occurred when feeding was not equal.
40. Illnesses occurred when feeding was not equal.
41. Illnesses occurred when feeding was not equal.
42. Illnesses occurred when feeding was not equal.
43. Illnesses occurred when feeding was not equal.
44. Illnesses occurred when feeding was not equal.
45. Illnesses occurred when feeding was not equal.
46. Illnesses occurred when feeding was not equal.
47. Illnesses occurred when feeding was not equal.
48. Illnesses occurred when feeding was not equal.
49. Illnesses occurred when feeding was not equal.
50. Illnesses occurred when feeding was not equal.

TABLE I

<table>
<thead>
<tr>
<th>Sex</th>
<th>Age in Days</th>
<th>Productive Weight</th>
<th>Average Litter Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>54</td>
<td>46.5</td>
<td>15.6</td>
</tr>
<tr>
<td>Female</td>
<td>54</td>
<td>47.2</td>
<td>15.7</td>
</tr>
<tr>
<td>Male</td>
<td>28</td>
<td>45.8</td>
<td>15.4</td>
</tr>
<tr>
<td>Female</td>
<td>28</td>
<td>45.2</td>
<td>15.3</td>
</tr>
</tbody>
</table>

In a second report, a student in vocational agriculture noted potato production with the use of mulch. He recorded daily yields of potatoes with and without mulch. The results are shown in Table II. He noted that the potatoes grown with mulch were larger and more uniform in size. He also observed that the yield of potatoes was increased by the use of mulch. The production of potatoes with mulch was greater than the yield of potatoes without mulch.

TABLE II

<table>
<thead>
<tr>
<th>Sex</th>
<th>Age in Days</th>
<th>Productive Weight</th>
<th>Average Litter Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>54</td>
<td>48.3</td>
<td>16.1</td>
</tr>
<tr>
<td>Female</td>
<td>54</td>
<td>47.5</td>
<td>15.8</td>
</tr>
<tr>
<td>Male</td>
<td>28</td>
<td>46.9</td>
<td>15.5</td>
</tr>
<tr>
<td>Female</td>
<td>28</td>
<td>45.7</td>
<td>15.2</td>
</tr>
</tbody>
</table>

A second student noted that the use of mulch in potato production increased the yield of potatoes. The results are shown in Table II. He noted that the potatoes grown with mulch were larger and more uniform in size. He also observed that the yield of potatoes was increased by the use of mulch. The production of potatoes with mulch was greater than the yield of potatoes without mulch.

Analysis of Crop Yields by Preceptors

In a third report, a student in vocational agriculture noted potato production with the use of mulch. He recorded daily yields of potatoes with and without mulch. The results are shown in Table II. He noted that the potatoes grown with mulch were larger and more uniform in size. He also observed that the yield of potatoes was increased by the use of mulch. The production of potatoes with mulch was greater than the yield of potatoes without mulch.

TABLE III

<table>
<thead>
<tr>
<th>Sex</th>
<th>Age in Days</th>
<th>Productive Weight</th>
<th>Average Litter Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>54</td>
<td>48.3</td>
<td>16.1</td>
</tr>
<tr>
<td>Female</td>
<td>54</td>
<td>47.5</td>
<td>15.8</td>
</tr>
<tr>
<td>Male</td>
<td>28</td>
<td>46.9</td>
<td>15.5</td>
</tr>
<tr>
<td>Female</td>
<td>28</td>
<td>45.7</td>
<td>15.2</td>
</tr>
</tbody>
</table>

A second student noted that the use of mulch in potato production increased the yield of potatoes. The results are shown in Table II. He noted that the potatoes grown with mulch were larger and more uniform in size. He also observed that the yield of potatoes was increased by the use of mulch. The production of potatoes with mulch was greater than the yield of potatoes without mulch.

Analysis of Crop Yields by Preceptors

In a third report, a student in vocational agriculture noted potato production with the use of mulch. He recorded daily yields of potatoes with and without mulch. The results are shown in Table II. He noted that the potatoes grown with mulch were larger and more uniform in size. He also observed that the yield of potatoes was increased by the use of mulch. The production of potatoes with mulch was greater than the yield of potatoes without mulch.

Analysis of Crop Yields by Preceptors

In a third report, a student in vocational agriculture noted potato production with the use of mulch. He recorded daily yields of potatoes with and without mulch. The results are shown in Table II. He noted that the potatoes grown with mulch were larger and more uniform in size. He also observed that the yield of potatoes was increased by the use of mulch. The production of potatoes with mulch was greater than the yield of potatoes without mulch.

Analysis of Crop Yields by Preceptors

In a third report, a student in vocational agriculture noted potato production with the use of mulch. He recorded daily yields of potatoes with and without mulch. The results are shown in Table II. He noted that the potatoes grown with mulch were larger and more uniform in size. He also observed that the yield of potatoes was increased by the use of mulch. The production of potatoes with mulch was greater than the yield of potatoes without mulch.

Analysis of Crop Yields by Preceptors

In a third report, a student in vocational agriculture noted potato production with the use of mulch. He recorded daily yields of potatoes with and without mulch. The results are shown in Table II. He noted that the potatoes grown with mulch were larger and more uniform in size. He also observed that the yield of potatoes was increased by the use of mulch. The production of potatoes with mulch was greater than the yield of potatoes without mulch.

Analysis of Crop Yields by Preceptors

In a third report, a student in vocational agriculture noted potato production with the use of mulch. He recorded daily yields of potatoes with and without mulch. The results are shown in Table II. He noted that the potatoes grown with mulch were larger and more uniform in size. He also observed that the yield of potatoes was increased by the use of mulch. The production of potatoes with mulch was greater than the yield of potatoes without mulch.

Analysis of Crop Yields by Preceptors

In a third report, a student in vocational agriculture noted potato production with the use of mulch. He recorded daily yields of potatoes with and without mulch. The results are shown in Table II. He noted that the potatoes grown with mulch were larger and more uniform in size. He also observed that the yield of potatoes was increased by the use of mulch. The production of potatoes with mulch was greater than the yield of potatoes without mulch.
Planning Postwar Instruction for Young and Adult Farmers

RUSSELL B. DICKEERSON, Teacher Education, Pennsylvania State College

IT IS not too late to begin thinking about vocational agricultural education in the schools which are about to begin with the young and adult farmers who are going to be so needed to help our farms. The demand for farm commodities will increase during the war years. It is important that the schools prepare for this need. The demand for farm commodities will increase during the war years. It is important that the schools prepare for this need.

The Importance of Nutritious Food

Food, good food, is another example of the need for education in school. Good food is necessary for all of us, but especially for the young. In homes everywhere that Americans are eating more and more of the good food that is available. In homes everywhere that Americans are eating more and more of the good food that is available.

Not only will the young be more healthful but they will be more productive in the fields. Good food is essential for the health and vitality of the nation. Good food is essential for the health and vitality of the nation.

Mr. Roy F. Hendickson, Head, Food Distribution Administration, recently said: in fact, that in 1947-48 Americans 18 years of age or more consumed more than 80% of their calories from fruits, vegetables, and other foods. The demand for more food is increasing daily. The demand for more food is increasing daily.

New Foods

There will be increased interest in a variety of new foods—many products from new food sources. Some of these foods include whole milk, skim milk, and cheese; low-fat dairy products; fruit juices; and meats. These foods are rich in vitamins and minerals and will be available for the first time in the home. These foods are rich in vitamins and minerals and will be available for the first time in the home.

The increased interest in new foods will be due to the increased demand for more nutritious foods. People are becoming more health-conscious and are demanding foods that are not only good for their health but also good for the environment. People are becoming more health-conscious and are demanding foods that are not only good for their health but also good for the environment.

We are learning that the production of nutritious foods is not only good for our health but also good for the environment. We are learning that the production of nutritious foods is not only good for our health but also good for the environment.

Improved Livestock Production

There will be greater need for improved livestock and poultry as well. The demand for high-quality livestock and poultry products will continue to increase. The demand for high-quality livestock and poultry products will continue to increase.

Improved Livestock production will be essential in meeting the demand for high-quality livestock and poultry products. Improved livestock production will be essential in meeting the demand for high-quality livestock and poultry products.

Improved farm Machinery and Equipment

The field of labor-saving machinery and equipment on the farm offers unique opportunities for the young and adult farmers. New farm machinery will be needed to be selected, purchased, and operated by the young and adult farmers. New farm machinery will be needed to be selected, purchased, and operated by the young and adult farmers.

The Value of Education in the Schools

In the second place, we are headed toward a kind of society, both rural and urban, that has never been known—society with new needs, high hopes, and rapid changes. Because of the war, the inhabitants of every community must face new problems and demands on every community must face new problems and demands.

The Value of Education for Adults

Education, for example, has become more meaningful to all young men and women through the war. Young men and women are realizing that they have new opportunities to increase their value to themselves and to society. Young men and women are realizing that they have new opportunities to increase their value to themselves and to society.
Looking Ahead in Farm Mechanics

J. R. CULLISON, Teacher Educator, University of Arizona, Tucson

Before we can plan a program in farm mechanics adequate to meet either our post-secondary or postgraduate needs, we must be clear on our basic objectives. What do we subscribe to as a sound program of educational preparation for the following questions:

1. Are present farm mechanics programs adequate to meet the needs of a mechanized agriculture?
2. Shall we continue to offer farm mechanics work to off-campus groups in the postgraduate period?
3. Shall we continue to employ special farm-machinery technicians in the postgraduate work?
4. Shall we continue to prepare teachers of agricultural education to teach both shop and production classes?
5. What should constitute our all-day program in farm mechanics?

a. Should the emphasis be placed on doing major construction and repair work and preparing basic skills?

b. Should the emphasis be placed on providing workers with service and preventive maintenance equipment?

c. What should the emphasis and preparation of the farm mechanics instructor assume in the postgraduate extended shop practice on the farm?

d. How much does the amount of the time in vocational agriculture should be devoted to farm mechanics?

e. What is the method of instruction that should be used?

f. How will a modified JTF procedure of teaching affect the nature and scope of our farm mechanics programs?

What teaching aids are needed in farm mechanics in order to develop them?

Meeting Workmen’s Needs

Most of the mechanical classes in the Food Production Training Program are restricted to equipment of that age or older. Only one type of vocational- agriculture instructor in any state publishes his work in these classes. Some of these classes are by men who have little or no professional training in methods of teaching, much of the instruction has been on an individual basis and not directed to group work. The students have had no systematic work directed to them by the instructor. Although we have a number of these new facilities, we may expect that these instructors in some of the other states have achieved some measure of success in their teaching. In a number of high schools the farm Mechanics program is being provided for the 1930-31 school year, and we believe that this new program will require that the teachers be familiar with the latest developments in farm mechanics.

One problem of major importance in the preparation of the teachers is the need to train them in the fundamentals of farm mechanics and in the actual operation of farm equipment. The problem of the teachers is to provide for the 1930-31 school year a program of instruction that will enable the teachers to meet the needs of their students.

Another problem of major importance is the need for a systematic program of instruction to train the teachers in the fundamentals of farm mechanics and in the actual operation of farm equipment. The problem of the teachers is to provide for the 1930-31 school year a program of instruction that will enable the teachers to meet the needs of their students.

A third problem is that of the methyl alcohol industry. In most of the cases where the teachers are not receiving adequate training in farm mechanics, there is a lack of systematic work with these students. The teachers have not been able to get the necessary training in farm mechanics to meet the needs of their students. The problem of the teachers is to provide for the 1930-31 school year a program of instruction that will enable the teachers to meet the needs of their students.

Meeting Workmen’s Needs

Most of the mechanical classes in the Food Production Training Program are restricted to equipment of that age or older. Only one type of vocational- agriculture instructor in any state publishes his work in these classes. Some of these classes are by men who have little or no professional training in methods of teaching, much of the instruction has been on an individual basis and not directed to group work. The students have had no systematic work directed to them by the instructor. Although we have a number of these new facilities, we may expect that these instructors in some of the other states have achieved some measure of success in their teaching. In a number of high schools the farm Mechanics program is being provided for the 1930-31 school year, and we believe that this new program will require that the teachers be familiar with the latest developments in farm mechanics.

One problem of major importance in the preparation of the teachers is the need to train them in the fundamentals of farm mechanics and in the actual operation of farm equipment. The problem of the teachers is to provide for the 1930-31 school year a program of instruction that will enable the teachers to meet the needs of their students.

Another problem of major importance is the need for a systematic program of instruction to train the teachers in the fundamentals of farm mechanics and in the actual operation of farm equipment. The problem of the teachers is to provide for the 1930-31 school year a program of instruction that will enable the teachers to meet the needs of their students.

A third problem is that of the methyl alcohol industry. In most of the cases where the teachers are not receiving adequate training in farm mechanics, there is a lack of systematic work with these students. The teachers have not been able to get the necessary training in farm mechanics to meet the needs of their students. The problem of the teachers is to provide for the 1930-31 school year a program of instruction that will enable the teachers to meet the needs of their students.

Meeting Workmen’s Needs

Most of the mechanical classes in the Food Production Training Program are restricted to equipment of that age or older. Only one type of vocational- agriculture instructor in any state publishes his work in these classes. Some of these classes are by men who have little or no professional training in methods of teaching, much of the instruction has been on an individual basis and not directed to group work. The students have had no systematic work directed to them by the instructor. Although we have a number of these new facilities, we may expect that these instructors in some of the other states have achieved some measure of success in their teaching. In a number of high schools the farm Mechanics program is being provided for the 1930-31 school year, and we believe that this new program will require that the teachers be familiar with the latest developments in farm mechanics.

One problem of major importance in the preparation of the teachers is the need to train them in the fundamentals of farm mechanics and in the actual operation of farm equipment. The problem of the teachers is to provide for the 1930-31 school year a program of instruction that will enable the teachers to meet the needs of their students.

Another problem of major importance is the need for a systematic program of instruction to train the teachers in the fundamentals of farm mechanics and in the actual operation of farm equipment. The problem of the teachers is to provide for the 1930-31 school year a program of instruction that will enable the teachers to meet the needs of their students.

A third problem is that of the methyl alcohol industry. In most of the cases where the teachers are not receiving adequate training in farm mechanics, there is a lack of systematic work with these students. The teachers have not been able to get the necessary training in farm mechanics to meet the needs of their students. The problem of the teachers is to provide for the 1930-31 school year a program of instruction that will enable the teachers to meet the needs of their students.
How efficient is our method of recruiting trainees in vocational agricultural education? What do we do to train these trainees? What opportunities do we provide for growth in the profession? What constitutes desirable conditions for teacher-education programs? These are some of the questions that have been posed in the literature on teacher education in agriculture. The National Standards Committee of the National Agricultural Education Association has recognized the need for an evaluation of the three phases of the agricultural education program: (1) evaluation of local programs and educational experiences of the trainees, (2) evaluation of the teacher-training programs in vocational agriculture, and (3) evaluation of the agricultural education system as a whole. In this paper, we will focus on the first phase of the teacher-education program.

The study was designed to investigate the effectiveness of the teacher-education program in agricultural education. The study was based on the premise that teacher education is an integral part of the agricultural education system. The study was conducted in two phases. In the first phase, a survey of teachers was conducted to determine their perceptions of the effectiveness of the teacher-education program. In the second phase, a study of the performance of the teachers who had completed the program was conducted.

The results of the study indicated that the teacher-education program was effective in preparing teachers to teach agricultural education. The teachers who had completed the program were better able to deliver the curriculum and were more effective in their teaching. The study also indicated that there were areas that needed improvement in the teacher-education program. These areas included the need for more practical experience, a better understanding of the agricultural education system, and better preparation of teachers for the teaching profession.

In conclusion, the study has shown that the teacher-education program is effective in preparing teachers to teach agricultural education. However, there are areas that need improvement. These areas include the need for more practical experience, a better understanding of the agricultural education system, and better preparation of teachers for the teaching profession.

The study has also shown that the teacher-education program is important in the development of agricultural education. The study has also shown that the teacher-education program is important in the development of agricultural education.
Future Farmers of America

A. W. TENNEY

Interest in the F.F.A. Chapter

C. D. WATSON, Chapter Adviser, Adirondack, Vermont

The Highclere Chapter of F.F.A. was organized in 1941 with a membership of 11 boys, all of whom were not only members of the boys enrolled in vocational agriculture at the time. The present membership is 21, a substantial increase. The agricultural enrollment of which three members and the advisor are members of the F.F.A., the present membership was a considerable addition to the chapter. This was also my first experience in F.F.A. work and I have not been disappointed with the results. In order to fulfill the definition of the Future Farmers of America as a co-operative organization of boys and girls, for boys studying vocational agriculture in the secondary schools, it is necessary that the members definitely understand that the chapter is their organization, that they are responsible, and that the function of the advisor is strictly advisory as far as determining and carrying out policies and activities is concerned. I have held chapter meetings where the advisor was the only member who made any motion during the entire meeting. This, to me, is a sad situation and I sincerely question the value of such a meeting to the members. I follow the practice of never making a motion at a meeting and of participating in the discussions. It is better, I believe, to have a member or when the course of action is detrimental to the group. I insist on the following activities.

Meetings and Activities

All of the activities of our chapter have been instigated by the members and all members are responsible for their success. We have been independent on questions of organization, to some extent, with a minimum of supervision by the advisor.

No organization works merely for the sake of working. The fact that many of the activities are a means of building up a team spirit, balances their incentive for their accomplishment.

Our chapter, consisting of a group of twelve boys, met after the first year, and started a co-operative venture in which all members are interested. We have members in the official and officers in the official position on the basis of their ability to do the work efficiently.

In conclusion, we have been advised that our chapter is worth one hundred dollars to the community and that the members are worth one hundred dollars each to the community. We have been advised that we are making a profit of one hundred dollars. We have been advised that we are making a profit of one hundred dollars. We have been advised that we are making a profit of one hundred dollars. We have been advised that we are making a profit of one hundred dollars. We have been advised that we are making a profit of one hundred dollars.

Postwar Instruction

And the nature of the unit of instruction.

And it must be continuous throughout the year. It should serve as the principal finding link between the learner, the teacher, the classroom, and the farm. It is these courses of study that we are concerned with. We have attempted to make the courses of study in the postwar period continuous and that they be in harmony with the needs of the farm and the economic conditions of the farm. We have attempted to make the courses of study in the postwar period continuous and that they be in harmony with the needs of the farm and the economic conditions of the farm. We have attempted to make the courses of study in the postwar period continuous and that they be in harmony with the needs of the farm and the economic conditions of the farm.

Conclusion

In conclusion, the vocational agriculture is strategically situated as far as the future of their instructional opportunities is concerned. There is no limit to the educational opportunities that are open. The teachers of agricultural education have been pushed back. There is a golden opportunity. But when the high school teacher is forced to take a job in rural education, he is driven to the necessity of earning a living. But when the high school teacher is forced to take a job in rural education, he is driven to the necessity of earning a living. But when the high school teacher is forced to take a job in rural education, he is driven to the necessity of earning a living. But when the high school teacher is forced to take a job in rural education, he is driven to the necessity of earning a living. But when the high school teacher is forced to take a job in rural education, he is driven to the necessity of earning a living.
Partnership Agreements

Ownership of personal property. The ownership of the personal property, the machinery, buildings, and equipment, is 50-50.

Cash Receipts

<table>
<thead>
<tr>
<th>Item</th>
<th>Revenue</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm</td>
<td>$175.00</td>
<td></td>
</tr>
<tr>
<td>Home</td>
<td>$528.70</td>
<td></td>
</tr>
<tr>
<td>Hog</td>
<td>$127.70</td>
<td></td>
</tr>
<tr>
<td>Poultry</td>
<td>$142.50</td>
<td></td>
</tr>
<tr>
<td>Dairy sales</td>
<td>$4,079.21</td>
<td></td>
</tr>
<tr>
<td>Crop sales</td>
<td>$215.13</td>
<td></td>
</tr>
<tr>
<td>Labor income</td>
<td>$1,075.40</td>
<td></td>
</tr>
<tr>
<td>Misc.</td>
<td></td>
<td>$7,866.64</td>
</tr>
</tbody>
</table>

Cash Receipts

Since cash receipts and expenses were shared equally during the year, each partner received a half of $7,866.64, or $3,933.32. Also, each partner paid one-half of the $3,378.72, or $1,689.36, to cover the cost of labor and capital, as if these transactions were unprofitable, one partner would own the other at the time of the annual settlement. In our example, each partner owned the real estate and half the personal property. The calculation of capital was $18,509.74, or $9,254.87 for each partner.

A Suggestion

**COACH PAUL BROWN, popular Ohio State coach, with a deep respect for the tradition and spirit of the University of Virginia (on leave), holds a remarkable record as coach in high school and college football. At Ohio State, Tec, the number one, is frequently called upon for talks by radio, press, and public meetings in Columbus and over the state. Many times he has made statements somewhat as follows: "If our boys make mistakes in football, we blame them; if we make mistakes, we blame me. None of our boys ever in-

Banquet Banter

Toasts: Ladies and gentlemen, favored to have a speaker at our banquet this year was one of our students who is teaching in a training department, a college professor. He addressed the students as to the value of their work and the importance of their efforts. He was very impressive and interesting, and the students were very attentive.

Banquet Banquet

Table

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash Receipts and Expenses</td>
<td>$3,933.32</td>
</tr>
<tr>
<td>Machinery expense and purchases</td>
<td>$934.00</td>
</tr>
<tr>
<td>Transportation</td>
<td>$79.47</td>
</tr>
<tr>
<td>Cattle purchases</td>
<td>$1,479.30</td>
</tr>
<tr>
<td>Pasture purchases</td>
<td>$32.00</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total (Cash Receipts and Expenses + Machinery expense and purchases + Transportation + Cattle purchases + Pasture purchases)</td>
<td>$8,298.00</td>
</tr>
</tbody>
</table>

Notes:

- Farm records were kept on the farm and are available for inspection.
- All cash receipts and expenses were divided as it was received, and all cash expenses and purchases were shared 50-50.