Progress in -

A Professional Person Participates in Professional Organizations

A professional person strives to advance the standards of his profession through a contribution to state and national associations as well as through his individual practice or service. All teachers should participate in the educational organizations and activities which are formed to advance the interests of their profession. In vocational agriculture it appears that there is an adequate number of such organizations. We need to perfect those which we already have rather than to think in terms of additional organizations.

Teachers need to have a more thorough understanding of the purposes and programs of organizations. They need to orient themselves with the opportunity to participate actively in them. Unfortunately, the National Vocational Agricultural Teachers Association was formed because other national organizations did not provide ample opportunity for participation in a program which met their needs. On a state level, it is desirable to have more and more functioning committees and to increase the scope of activity on a district or regional basis. Teachers could take a good lesson from the FFA in making the program relevant and pertinent. Too often amateur organizations do not address themselves to the task of developing challenging and meaningful goals, and ways and means to be followed in accomplishing these goals. Programs need to be written and the membership is entitled to know what is being planned and accomplished. This increased activity, which would be possible, would increase the membership. Other professional organizations have more adequate budgets than are being provided by teacher associations.

A Professional Person Packs Pride in the Profession

The professional person reflects satisfaction in his work. He has a point of view that other work is more important. He is interested in telling others the good work about his profession. At this point the teaching profession needs to make some improvement. For too many years we have been converted to being a teacher. Too many of our members have reflected dissatisfaction, thereby encouraging students to engage in other pursuits. In many cases, it is the incompetent, unprepared person who is satisfied. The success for the dissatisfactions should be determined and a program developed to remove them. This is our professional responsibility.

Experiences with - -

(Continued from Page 139)

Agriculture is the science of developing and using their own natural resources.

What of the Future?

It is always dangerous to try to predict the future. In spite of the dangers involved a few predictions seem to be in order.

1. The development of source units seems likely to go forward during the next few years. Two aspects of this development seem clear. The first is that source units may be developed on the state level and distributed to teachers. The second is that the sales of source units will be supplied by individual teachers or by small groups of teachers working in units adapted to their local areas.

2. Future publications of the College of Agriculture may be developed with suitable visual aids to accompany them. These may take the form of sets of slides, motion picture films, or TV programs which will supplement and complement the printed booklet.

3. Teachers will be better trained at the pre-service level. Unfortunately teachers are required to be graduated from undergraduate training. So that all of us will agree that improvement may still be made. Improved instruction in college classes, either in professional education courses or in technical agriculture classes will do much to raise the quality of teaching of teachers. This improvement will result in the college staff becoming aware of its opportunities for improving instruction and as it develops better understanding of the needs of teachers it helps to train.

4. In-service training of teachers will need to be adapted to meet the needs of teachers for further help in the use of instructional materials for more effective teaching. For example, groups of teachers need to have already taken for help in the further development of source units. Other groups have asked for help on how to make better films, how to take better pictures for instructional work, how to make more effective charts and exhibits and how to make better use of those materials in their schools.

Editorials (cont'd)

(Continued from Page 127)

...body... Henry George of Virginia on a hospital bed dreamt up the elements that later became the Farmer of America. Let those who follow remember that the farm boy of the day must have the challenging leadership that will enable him to find and fill his place in the whirl of progress and technology.

Doctoral programs should be concerned with much more than educational activities in making their contribution to the development of leaders who are so nearly needed in those days of worry and international tension.

Cover Picture Legend

The cover picture shows the Advisory Committee to Agricultural Education and General Agriculture on the campus of the University of California at Davis. They are evaluating and making recommendations for the continued program and improvement of agricultural education and related agriculture courses. Heading from left to right in the center of this picture is Russell Perry, Professor of Agricultural Engineering; John D. Seiler, Associate Professor of Plant Pathology; Luther D. Davis, Professor of Forestry; and Chairman of this committee, F. N. Bridges, Dean of the College of Agriculture and ex-officio member of this committee. C. W. Sutherland, State Teacher Trainer of Agricultural Education, Robert Allard, Associate Professor of Agrometeorology, and E. M. Jarman, Senior Teacher Trainer of Agricultural Education. These people are vitally interested in the program of training teachers of vocational agriculture and meet periodically to plan a program which will be most effective in meeting current needs.
Guest Editorial

HERBERT L. SCHALLER, Editor, Better Farming Methods Magazine

I was a town boy, I took vocational agriculture, belonged to the local FFA Chapter, and served as one of its leaders. My supervised farming program was very meager, not even enough to earn farm boys my profits. The yields were exceptionally small. My hay bales were far and few between. I never became a Chapter, state, or American Farmer.

But my interest in agriculture grew from these experiences, supporting the farmers of the farm boys who had every opportunity to make the most of the Vo-Ag program.

I became sympathetic and encouraged the work of my farm teacher for a "town boy" led me to seek a college degree in agriculture and prepare to enter the vocational agriculture teaching field. With this as a background, let me raise three points that I believe offer a distinct challenge to vocational agriculture today.

1. You should encourage town boy participation in vocational agriculture.

Yes, encourage it. Some states, administrators, and teachers, I understand, prohibit town boys from taking Vo-Ag. But if the boys show an interest in Ag, you should cultivate and develop that interest.

Why encourage town boys to take Ag? Let me give you two distinct points:

(a) A vocational agriculture program should serve the interests of the entire community and the entire field of agriculture—not that the direct interest of farming.

Town and city people have a stake in your program. Town and city boys do too. In many cases, the future of agriculture and the future of your program may rest with the opinions and beliefs that town boys come to hold.

They may not always farm, but they may be in a position to influence agriculture and farmer's opinions in high school.

(b) It is good public relations for you and agriculture.

One of the subjects discussed wherever Ag people meet is the relationships between farm and city people. From past experiences, you know that many city people often give agriculture a "black eye" because they lack an understanding of the problems of farm people.

Might not this offer an excellent opportunity to build better relationships between these two groups? You have an opportunity to teach town boys an understanding of and an appreciation of the entire field of agriculture.

If you believe that you have the best program in agriculture, not only for your farm boys but for the good of all, then what better use can you make of this opportunity on such a group of boys?

(Earlier page 240)

Guide-Posts to Improvement

The theme for this issue implies that improvement in supervised farming programs is assumed as both a need and a possibility. None of us is likely to question this assumption as we recognize the developments which have taken place to date in vocational agriculture. The challenges which currently face us for both of the present and future.

What are the directions in which such improvement can be made? For example, in the position of supervised farming programs in the process of a pupil to prepare for his vocation the same as it has been, and should the position that position or become even more dominent? Is the scope of supervised farming programs a means of preparing all that we would have it today? Is the quality of the experience which our supervised farming programs are providing as great as it can be or needs to be? Are we emphasizing the proper outcomes of supervised farming programs in stressing dollars earned; assets acquired; knowledge and skills obtained; motivation produced; requirements met; promontory and public values; attitudes developed; and so on? Where is the emphasis and what should it be? Is the supervised farming program a selective device for enrolling and continuing pupils in vocational agriculture curriculums, should it be, and, if so, how and why it is to use to that end? These are all of the questions which can be raised as we reflect upon the possible directions in which supervised farming programs may be improved.

Rather than to continue to raise questions we will take a stand on at least one possible direction for improvement, a direction in which some progress is being made. It is this: the expansion of change in concept beyond the project dominated program built upon the participation of the pupil in solving real problems of farm operation and management involving both skills and decision making. The more we see the growth in concept applied in supervised farming programs and the more we reflect upon its possibilities as a means of preparation for farming, the more we are to prove to the project idea or concept, so useful to us in the past in reaching the vocational stage of development, is threatening to become the greatest single deterrent to increasing the effectiveness of programs of preparation for farming.

It has been the key to the training program which helped us to open our eyes to the limitations of the project idea and to the far greater opportunities available through place participation in the greater variety of genuine farm experiences.

The companion editorial in this issue refers to the appropriateness of non-farm boys in vocational agriculture. This with point of view we agree but for different reasons and under different circumstances.

There are occasional non-farm boys with a genuine interest in preparing for farming. One of the li-
Dynamics of individual on-farm instruction

It is important in dealing with all levels of students

LOYD J. PHIPPS, Teacher Education, University of Illinois

Habits or Ways of Thinking of Individuals

Since no "mechanical" is operating in home on-farm instruction, a teacher needs to analyze the thinking habits or minds of the persons he is trying to "educate" his efforts for an average individual.

Most people have normal individuals with attitudes, interests, and ideas that conform to the average individual. Some individuals have an attitude of "mechanical-mindedness," some an attitude of "emotion-mindedness," and some are very rapid or typicall they may be in evidencing thought processes.

How to React to Different Thought Patterns

A teacher, for most effective results, needs to adjust his reactions and pedagogical methods according to the mind or habits of thinking of the person he is instructing. A normal individual is not a "mechanical-minded" person. He wants to know "why" as much as he wants to know "how." He often exhibits the characteristics of one classification one day and the characteristics of another classification the next day.

If a person is a "mechanical" individual, he may exhibit the characteristics of one classification one day and the characteristics of another classification the next day.

If a person is a "mechanical" individual, he may exhibit the characteristics of one classification one day and the characteristics of another classification the next day.

If a person is a "mechanical" individual, he may exhibit the characteristics of one classification one day and the characteristics of another classification the next day.

If a person is a "mechanical" individual, he may exhibit the characteristics of one classification one day and the characteristics of another classification the next day.

If a person is a "mechanical" individual, he may exhibit the characteristics of one classification one day and the characteristics of another classification the next day.

If a person is a "mechanical" individual, he may exhibit the characteristics of one classification one day and the characteristics of another classification the next day.
Toward greater coordination between farming programs and agriculture in the community

A Study of the Supervised Farming Program in California

OTTO MERZ, Research Assistant, University of California, Los Angeles

Supervised farming is generally accepted as the heart of the program in vocational agriculture. Those farming programs that are taught to students are both an asset and a problem because they should provide opportunities for the farm student to gain skills and experience needed to farm.

Providing such vocational education in agriculture is becoming more of a challenge with the changing farm labor market. At the same time fewer farmers are expected to produce food for more people from the same area of land.

Purpose and Scope of the Study

An investigation of the supervised farming program as an instructional device in California agriculture was undertaken from three different aspects (1) the historical development of the supervised farming program, (2) a study of the supervised farming program as it is now conducted in the Annual Descriptive Reports of the California Farm Bureau Federation (1952-53) and comparing these figures with those of the total farming industry in California, (3) a study of the central theme of this study on the hypothesis that crops are not receiving the attention they merit in the teaching of agriculture in California. Regional supervisors readily agreed and admitted that the emphasis was not as great on crops as it should be.

After presenting considerable evidence verifying this conclusion, possible reasons (4) length of the course. (5) student interest. (6)straints of course content. (7) emphasis on social sciences. (8) time required for field work. (9) teacher training.

Historical Findings

The historical development of supervised farming has been studied (1) that both school farm laboratories and the home farms are making contributions toward the future development of agriculture. Both the school and the farm have contributed. The school has provided instructional facilities and the farm has provided practical training facilities. The school has contributed in a more direct manner because it has provided a place where the student can learn under the guidance of a teacher. The farm has contributed indirectly because it has provided a place where the student can learn by doing. The farm has also provided a place where the student can learn by watching others work.

The activities most mentioned in professional literature on farming, both in the soil and livestock divisions, were: (1) the awarding of scholarships, (2) the awarding of prizes for the best work, (3) the awarding of scholarships to students who have done the best work, (4) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (5) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (6) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (7) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (8) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (9) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (10) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (11) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (12) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (13) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (14) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (15) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (16) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (17) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (18) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (19) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (20) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (21) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (22) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (23) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (24) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (25) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (26) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (27) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (28) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (29) the awarding of scholarships to students who have done the best work in the soil and livestock divisions, (30) the awarding of scholarships to students who have done the best work in the soil and livestock divisions.

(Continued on Page 21)

ANALYZING SOW AND LITTER ENTERPRISES

Analysis can be used to improve supervised farming programs.

Arlin W. Hollander, Yo-Aq Instructor, Marcellus, Wisconsin

The primary purpose of the supervised farming program in Vocational Agriculture is to implement classroom instruction and train project students and prospective farmers in the art of sow and litter farming. In a school and community, the sow and litter enterprises are coordinated. If such a program involves the knowledge and skills of an ostrich, the enterprise can function effectively. Each of the 22 sow enterprises was a profit and was reeled in the Wisconsin Agricultural Science Section. This program involves the knowledge and skills of a farmer. It is a program for the few simple steps: (1) the farrowing date of each sow, (2) the farrowing date of each pig litter, identification, (3) an accounting of each pig from birth to farrowing, (4) a weighing of pigs at farrowing and 5 months of age, or 154 days.

The 22 litters had 40 sows which farrowed 547 pigs, or an average of 68.6 pigs per litter. A total of 248 pigs were raised, or an average of 0.67 pigs per litter. On a percentage basis the results are as follows: 77.8% of the pigs were raised 70% of the pigs were born dead or soon thereafter 7.5% were laid on.

Table I. Comparison of Data from Cases with More than One Litter

<table>
<thead>
<tr>
<th>Case No. 2</th>
<th>Case No. 3</th>
<th>Case No. 4</th>
<th>Case No. 5</th>
<th>Case No. 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of sows</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Number of piglets</td>
<td>24</td>
<td>30</td>
<td>36</td>
<td>42</td>
</tr>
<tr>
<td>Average piglets per litter</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Percentage of live pigs</td>
<td>75%</td>
<td>75%</td>
<td>75%</td>
<td>75%</td>
</tr>
<tr>
<td>Percentage of stillborn pigs</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
<td>25%</td>
</tr>
<tr>
<td>Percentage of piglets lost</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

(Continued on Page 21)

40% died from scores.
2.9% died from miscellaneous causes.
It is my firm belief, that 90% of the pigs farrowed could be raised. By proper feeding and management, the cost of raising pigs in each case should be at least 15 cents.
I have found that it takes from six to eight weeks per year to properly raise a sow and litter enterprise. During the visit, each boy is carefully watched on the 18 sow enterprises. The importance of employing as many successful factors as possible in concluding the sow and litter enterprises.

(Continued on Page 14)
The vocational agriculture

L. C. Pinkey, Va-Ag Instructor, Carthage, Mo.

PROBABLY the supervised farming program is the weakest part of our entire Vocational Agriculture program. The statement has been made many times. It is an unfortunate situa-
tion, because an adequate supervised farming program is an indispensable part of the successful vocational in- troduction to agriculture.

A boy should acquire an adequate experience in the areas of farming that he would be working in his first year of training, for the obvious reason of taking himself with training facilities. Moreover, this is the most critical time for the acquisi-
tion of a project or program because a boy cannot develop a satisfactory project or program if his highest point at that time. This enthusiasm can build only rapidly after the time of its being improved has passed. The boy's parents experience a similar reaction to the boy's supervised farming program at about the same time as the boy does. Most beginning students of vocational agriculture and their parents find the supervised farming program idea different, yet lacking the excitement. Words alone are hardly adequate to clarify the significance and proper re-
lation of this part of the program. A successful farm program is less a part of the background and life of the school than the remainder of the vocational agriculture program.

Use of an Illustration

I have used a demonstration by assem-
bly in a wheel to illustrate the impor-
tance of planning the supervised farming program. It was given before one of my Vi-
cational Agriculture classes at the begin-
ing of the day of school and before the parents of these students came in for the parents' night. The illustration seemed to illustrate the formation of the program as a whole.

To construct the wheel, this was the order in which the various parts of the wheel were added: the carboard, the sandpaper, the hub, the spokes, the rim, and the handle. The wheel was explained to be made large enough for the audience to read all words written on it. The first one, two, and one-half feet in diameter.

Building the Wheel

To begin the illustration, the title is placed on the board above the location for the wheel. Each word is written on a separate piece of cardboard. At this point, the audience is informed that students of vocational agriculture learn to live a life of service and happiness as well as to make a good living through the use of good farm practices. This leads to the next paragraph, which says: "Learning to do. Doing to learn. Learning to live. Living to serve.

The wheel of vocational agriculture

To change the daily habits of the average farmer is not a difficult task. This is a factor in the problem facing the teacher of agriculture in improving the efficiency of his students. Through the supervised farming program. Unless you have the cooperation and confidence of both the father and son you will not meet with a high degree of success. Of utmost importance is be-
ing familiar with the entire farm situ-
ation. A knowledge of the farm's goals, available capital, work skills, and equipment is necessary in carrying out the labor saving suggestions.

The individual student must first recognize the importance of saving time and labor which in turns means more dollars in his pocket and more free time for pleasures such as sports and recreation.

Stimulate Interest in the Program

I can help to alert the student to the possibilities of doing more efficiently. Some examples are:

1. 5 steps per day = 1 mile per year.
2. Who will walk your dog or the children?
3. You can push more (or wheels) when you push your car or the car.

A movie, slides, or filmstrip on labor efficiency shows students that improved habits and increased interest for parents and students will stimulate interest in finding out the weaknesses on the farm.

A well-planned tour for farmers and suitcases students is a way of introducing a large number of man-

work units per man will start a dissatisfaction on "savi-
g labor." This will result in the small and unimportant equipment, along with changes in the method and plan of doing the job.

Get Labor Efficiency Operating on the Farm

Each student should make a list of his farm's operations bearing on supervised farm work. Compare these operations with those of a carefully planned and re-

lished program. The student should then decide, under supervision, what operations can be eliminated, combined, or retained.

A study of distance and time will help persuade the student that improvements could be made in such work methods. It is necessary to spend a few evenings at each student to check figures and discuss the problems and plans with the father and son. As a result of his studies the student lists the jobs where time is excessive and where time is too free. Suggestions are made to shorten the distance and decreasing the time to do the job.

A list of all equipment used will enable the student to compare his facili-
ties with those of other students and with his own farms. As a result the student lists all essential equipment. He then decides whether the list is master and cheaper to buy or make the needed equipment.

Before planning any rearrangement of the farm's floor plan for sale of his farms and on the basis of traveling less distance, more time for home work, and less time for travel. This would be done if the study is an in-

rial study of an actual farm. It would have been otherwise.

The following were sketched from the New York Times, April 21, 1953, New York Times Education Dept., Albany, N.Y.

1. The old and the new. A more efficient new has been sophisticated in a supervised farm program with a plan to improve the experiences which the pupil had in this case.

2. Improvements have been made as a result of planning the class-
rooms and with process. Supervised farming has been effective.
A basis for measuring and evaluating the supervised and directed practice programs

GLEN E. UNDERWOOD, Ya-Ang Instructor, Princeton, N. J.

How can Instructional Agriculture measure and evaluate the supervised and directed practice programs of their respective students? The answer to this question is varied and depends upon the prevailing types of farm management, geographical locations, state and federal administrative policies, etc. Undoubtedly the most common method is the numerical use, the number of head of livestock or the number of acres of crops. This is obviously inexcusable. We must be convinced that we can no longer be content with the limited and fragmented results of the student's participation in our instruction. We must turn our attention to measuring our results in this manner. The number of statements that are made and inserted into the student's permanent record is a criterion for measuring and evaluating a school system or a department of vocational agriculture. Likewise, the student's participation shall be noted as a sign of his progress as he is taught the material. When a course is completed, the student's progress shall be evaluated and discussed and plans of remedial programs of vocational agriculture students. We may predict with confidence that the boy with the twenty-five head of five-month-old calves or ten acres of cotton or peanuts and full recognition of the need for the same--the unburned barrel of cattle or a small acreage of peanuts or potatoes--will have a greater chance of academic success than the boy who was not taught in such areas, since he was taught in areas that were not of immediate concern to him. Quite possibly the latter boy will need to devote much more than the former to the cause of his personal success.

Since the establishment of the Department of Agricultural Education in this state, we have used productive man work units as a basis for his instruction and measuring and evaluating the student's progress. From the beginning, various age groups, freshmen, sophomores, juniors, and seniors have been involved in a hundred per cent, sixty, fifty, and sixty-six productive man work units respectively in order to fulfill the requirements for their supervisory and directed practice programs. All laborable age groups have been involved in various activities that are essential to the good farming of the area, and it would be misleading to state that this method has been executed per cent effective during this time.

Advantages and Limitations

The following analysis of the above plan from the standpoint of the advantages and disadvantages is based upon the reaction and opinion of (1) students, (2) the attitudes of vocational agriculture (3) parents and teachers (4) vocational agriculture students.

dynamics of --

(Continued from Page 167)

decisions on plans may influence each individual's performance.

A person whose actions are controlled by his emotions can more easily be made ready to cooperate in an effective manner by dramatizing a situation, or by showing how it is possible to carry on a program of farm management. For activity this is often important, as particular individuals often feel the impact of emotions and enthusiasm, and they are usually more inclined to be influenced. It is often appreciated as an opportunity to get on the "bandwagon" of "a skeptic" or "a smart aleck" is often the most difficult type of individual to handle. Ability to recognize quickly persons who exhibit the characteristics of a "skeptic" or "smart aleck will, however, give a sense of security to a teacher and make it possible for him to work effectively with such people. Often "skeptics" or "smart alecks" appeal to a person who recognizes them for what they are and may work as much as they can. A teacher cannot afford to allow such a student to remain unbribed or undisciplined. If a "smart aleck" is not too smart it may be possible to get something through him, but if he is doing something else with his remarks, he will often drop this mod of attitude and adopt another mood or attitude.

A person with an attitude is often difficult to play at. He may have developed a feeling that he feels more secure by taking a negative attitude, he becomes more aggressive, or by being more non-confrontational. "Pointing out the problem by what he has done or what he plans to do in order to start him has little or no effect on him. A teacher also can often combat this attitude by not trying to avoid the student, but to help the student, or by presenting both sides of a problem, or by allowing the student time to think before he is motivated to think, the problem he is discussing is usually decreased.

Learning by doing --

(Continued from Page 194)

Learning by doing, since the profits are used for such educational purposes as a trip to the International Livestock Exposition in Chicago, sending students to the Field Day in the county, camp, and recreational trips to a zoo or museum during the academic year. This is one example of following through with instruction by carrying the one-week and the PFA motto of "Learning to Do Doing to Learn" E. E. Clain

To become acquainted with the progressive techniques of are concentrated on the growth and progress of the student and his living environment. To provide guidance for a student and his parents regarding selection of the best program of supervised and directed practice. To plan for the future of the student by helping to raise the standards of quality of this phase of our program in the Princeton area.

Editorial --

(Continued from Page 197)

the selection of the proper program of supervised and directed practice program may not be adapted to a particular area. In addition, the situation and the needs of the student may be more realistic, or in some cases of teaching to a student that will have been handicapping the farm boy in the past. It is sometimes difficult to get a program of supervised and directed practice program. Perhaps the only limitation between them all is the fact that they are alike and similar in their development and as such supervised programs may be comparably the same program is often effective for improvement. W. A. S.

Is the day far away when he has been completely satisfied with the life he is leading, with the thoughts he is thinking, with the things he is doing, when there is not forever heating at the same time? The same green desire to do something larger which he knows he was never and intended to do.

A teacher explains the concept of Supervisory Farming Programs to parents and pupils during a visit to the farm.

The Agricultural Education Magazine, March, 1954

Effectiveness of supervised farming programs and other teaching is dependent upon --

Frequency and pattern of farm teaching visits

E. E. CLAIN, Teacher Educator, Pardson University

How frequently should the teacher of vocational agriculture make teaching visits to the home of his students? When should these teaching visits be made so as to be effective? Any attempt to answer these questions involves an analysis of the present habits of practices of the students, their families, and the students themselves. The pattern of visits is somewhat varied from student to student. The number of visits which a student makes and the frequency of visits are usually governed by such factors as the time available, the distance, the time, and the time available. The visiting is usually based upon the following:

A survey of farm teaching visits by using these purposes as criteria:

Observed and frequent patterns

As a preparation for trying to obtain partial answers to the questions which have been stated in the first part of this paper, let us consider some data which were obtained from a survey of farm teaching visits made by a selected group of vocational agriculture teachers in Indiana. The data indicate that during the fiscal year of 1951-52 there was a range in frequency of farm teaching visits which varied from one to sixty-six per cent of the students during the year to one teacher who visited each of his student one or two times during the year. This teacher actually averaged slightly more than ten visits per student.

The data indicate that there is much variation in the frequency of visits made by the per cent of the total students visited by various teachers. Table 1, which is based below, contains data on the frequency of teaching visit data for twenty-nine teachers who visited students during the year. It is evident that students visited 0 to 7 or more times per year. These data were gathered from two teachers who visited students 0 to 7 or more times per year. It is evident that there were no noticeable differences among the patterns of farm teaching visit made by these teachers. Four patterns were identified: (1) a pattern of frequent teaching visits made during the summer months when school was not in session, (2) a pattern of teaching visits made during the school term and frequent visits made in the summer months (two or more visits per student per month); and (3) a pattern of frequent teaching visits made to those students having average or above average opportunity to develop supervisory farming programs and in frequent or no visits made to students having below average opportunity for supervisory farming practice.

Table 1. Summary of Farm Teaching Visit Data for Twenty-nine Teachers of Vocational Agriculture

<table>
<thead>
<tr>
<th>Frequency of Visits</th>
<th>No. of Teachers</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>More than 6</td>
<td>3</td>
</tr>
</tbody>
</table>

Some Challenging Questions

The data cited have indicated observable patterns of supervised farming programs and other teaching programs. The primary question for evaluative purposes is: What are the reasons why the student of vocational agriculture does not participate in the supervised farming program? (These reasons were stated as the followings: (1) lack of interest, (2) fear of failure, (3) lack of time, and (4) lack of resources.)

1. Is the variation in frequency of visits made to my individual student's natural and his/her expectation of the frequency of visits that is of the greatest concern to me? (The answer to this question could be answered by evaluating, such questions as the followings: Is the student's knowledge of the requirements for the supervisory and directed practice programs? Is the student's knowledge of the requirements for the teaching program? Is the student's knowledge of the requirements for the teaching program? Is the student's knowledge of the requirements for the teaching program?)

2. Is there a relationship between the frequency of visits made, the level of interest in the program, and the student's participation in the program? (The answer to this question could be answered by evaluating, such questions as the followings: Is the student's knowledge of the requirements for the supervisory and directed practice programs? Is the student's knowledge of the requirements for the teaching program? Is the student's knowledge of the requirements for the teaching program?)

3. Are there any patterns of farm teaching visits appropriate for specific groups of students? (The answer to this question could be answered by evaluating, such questions as the followings: Is the student's knowledge of the requirements for the supervisory and directed practice programs? Is the student's knowledge of the requirements for the teaching program? Is the student's knowledge of the requirements for the teaching program?)
1954 program of work of the Agricultural Education Division, American Vocational Assn.

The operating policies for the Agricultural Education Division as a whole are the same as those established in the past, with the appropriate allocation for five standing committees which report and present policy to the Association each year. The following committees are the A.V.A. Committee:

1. Professional Information Committee
2. Curriculum and Text Committee
3. Research Committee
4. Standards and Policies Committee

The following plans of three committees for the year 1954-55 were approved by the American Vocational Education Division of the A.V.A. at the annual convention in Chicago, November 22-25, 1953.

Professional Information

Within the framework of the operating policies of the Agricultural Education Division of the American Vocational Association, this committee defines and disseminates policies that are congruent with the institutional policies of the various state departments of education, professional and institutional material, and the early experiences of teachers, supervisors, and teacher educators. Their program is as follows:

1. To encourage and assist with the development of research in the several fields.
2. To promote research sessions in regional meetings of the American Vocational Education Association.
3. To compile lists of vocational education studies in progress during 1953-54.
4. To prepare a copy of Supplement for the A.V.A. Conference in 1953-54.
5. To make sure that the comprehensive study of the A.V.A. Conference held on January 25th on "The Agricultural Education Division of the A.V.A." goes on record as the first comprehensive study of the committee shall be set up to work with the American Vocational Association, and to be conducted by the U.S. Office of Education.

Recommendation: It is recommended that the consideration of the data assembled by the 1952-53 Committee on the nature and effectiveness of "Summaries of Studies in Agricultural Education" be published in 1953-54. The committee shall work closely with the U.S. Office of Education in the preparation of this project.

Research Activities Planned

1. To encourage and assist with the development of research in the several fields.
2. To promote research sessions in regional meetings of the American Vocational Education Association.
3. To compile lists of vocational education studies in progress during 1953-54.
4. To prepare a copy of Supplement for the A.V.A. Conference in 1953-54.
5. To make sure that the comprehensive study of the A.V.A. Conference held on January 25th on "The Agricultural Education Division of the A.V.A." goes on record as the first comprehensive study of the committee shall be set up to work with the American Vocational Association, and to be conducted by the U.S. Office of Education.

Recommendation: It is recommended that the consideration of the data assembled by the 1952-53 Committee on the nature and effectiveness of "Summaries of Studies in Agricultural Education" be published in 1953-54. The committee shall work closely with the U.S. Office of Education in the preparation of this project.

Professional Relations

The project to be undertaken by the Professional Relations Committee will be two-fold:

1. A survey of working agreements between Vo-Ag and Ag-extension in the several states to discover how these agreements are working in actual practice and to find from the survey the practices or techniques which are most successful in bringing about better relations between the two groups.
2. A survey of aids and services given by the colleges of agriculture and extension service departments in the various states in the up-grading and in-service training of teachers of agriculture, making this information available to agricultural education leaders in other states in order that they might have information which will help them in developing better working relationships with the colleges of agriculture and in-service extension service departments in the in-service training of teachers of agriculture.

Another project considered by the Professional Relations Committee was the improvement of relations between the A.V.A. and the N.R.A. No definite procedure for this project was determined.

We are also engaged in the preparation of five standing committees which report and present policy to the Association each year. The following committees are the A.V.A. Committee:

1. Professional Information Committee
2. Curriculum and Text Committee
3. Research Committee
4. Standards and Policies Committee

The following plans of three committees for the year 1954-55 were approved by the American Vocational Education Division of the A.V.A. at the annual convention in Chicago, November 22-25, 1953.

Professional Information

Within the framework of the operating policies of the Agricultural Education Division of the American Vocational Association, this committee defines and disseminates policies that are congruent with the institutional policies of the various state departments of education, professional and institutional material, and the early experiences of teachers, supervisors, and teacher educators. Their program is as follows:

1. To encourage and assist with the development of research in the several fields.
2. To promote research sessions in regional meetings of the American Vocational Education Association.
3. To compile lists of vocational education studies in progress during 1953-54.
4. To prepare a copy of Supplement for the A.V.A. Conference in 1953-54.
5. To make sure that the comprehensive study of the A.V.A. Conference held on January 25th on "The Agricultural Education Division of the A.V.A." goes on record as the first comprehensive study of the committee shall be set up to work with the American Vocational Association, and to be conducted by the U.S. Office of Education.

Recommendation: It is recommended that the consideration of the data assembled by the 1952-53 Committee on the nature and effectiveness of "Summaries of Studies in Agricultural Education" be published in 1953-54. The committee shall work closely with the U.S. Office of Education in the preparation of this project.

Research Activities Planned

1. To encourage and assist with the development of research in the several fields.
2. To promote research sessions in regional meetings of the American Vocational Education Association.
3. To compile lists of vocational education studies in progress during 1953-54.
4. To prepare a copy of Supplement for the A.V.A. Conference in 1953-54.
5. To make sure that the comprehensive study of the A.V.A. Conference held on January 25th on "The Agricultural Education Division of the A.V.A." goes on record as the first comprehensive study of the committee shall be set up to work with the American Vocational Association, and to be conducted by the U.S. Office of Education.

Recommendation: It is recommended that the consideration of the data assembled by the 1952-53 Committee on the nature and effectiveness of "Summaries of Studies in Agricultural Education" be published in 1953-54. The committee shall work closely with the U.S. Office of Education in the preparation of this project.

Professional Relations

The project to be undertaken by the Professional Relations Committee will be two-fold:

1. A survey of working agreements between Vo-Ag and Ag-extension in the several states to discover how these agreements are working in actual practice and to find from the survey the practices or techniques which are most successful in bringing about better relations between the two groups.
2. A survey of aids and services given by the colleges of agriculture and extension service departments in the various states in the up-grading and in-service training of teachers of agriculture, making this information available to agricultural education leaders in other states in order that they might have information which will help them in developing better working relationships with the colleges of agriculture and in-service extension service departments in the in-service training of teachers of agriculture.

Another project considered by the Professional Relations Committee was the improvement of relations between the A.V.A. and the N.R.A. No definite procedure for this project was determined.
A new twist in supervised farming

A new twist in the supervised farming program is being offered to high school students in one of the vocational agriculture departments in Nebraska. The idea is to provide the students who are interested in farming with a practical, real-time opportunity to learn more about the real world of farming. This program is designed to give students a better understanding of the challenges and opportunities in the agricultural industry.

Signs

Guest Editorial: **Building better supervised farming programs**

C. E. RICHARD, Teacher Educator, Virginia Polytechnic Institute

The current issue's theme is centered around the benefits of supervised farming programs. The article highlights the importance of these programs in providing students with valuable hands-on experience in agriculture. The program aims to improve student engagement and ensure that students are prepared for future agricultural careers. The article emphasizes the need for more comprehensive and well-planned supervised farming programs to better equip students for the agricultural workforce.

In conclusion, the article encourages educators and agricultural professionals to continue improving supervised farming programs to meet the evolving needs of students and the agricultural industry.

Conclusion

In summary, the supervised farming program offers students practical experience and prepares them for future careers in agriculture. By investing in well-planned and comprehensive supervised farming programs, educators can help students develop the skills and knowledge needed to succeed in the agricultural workforce.

References

Author's Note

The discussion of supervised farming programs highlights the importance of providing students with hands-on experiences in agriculture. This approach helps students gain a deeper understanding of the industry and prepares them for future careers. The program's effectiveness can be further enhanced by including more diverse and practical activities that cater to the needs of students and the agricultural sector.

Acknowledgments

The author thanks the anonymous reviewer whose comments and suggestions greatly improved the manuscript.
Emphasizing their content and organization

Loren D. Phillips, Coordinator of Agriculture, Ohio State College, Richmond, California.

The previous article in this series dealt with the philosophy of the junior college system. This time, the major emphasis will be on junior college agriculture. The major topics of this article will be: (1) a discussion of the general education courses; (2) a presentation of the agricultural courses; (3) a discussion of the teacher education courses; and (4) a review of the junior college agriculture programs in Ohio.

The discussion of general education courses will include an analysis of the types of courses offered, the number of credits required, and the content of the courses. The agricultural courses will be discussed in terms of the types of classes offered, the number of credits required, and the content of the courses. The teacher education courses will be discussed in terms of the types of classes offered, the number of credits required, and the content of the courses. The junior college agriculture programs in Ohio will be reviewed in terms of the types of programs offered, the number of students enrolled, and the content of the programs.

Table 1. Most Frequently Offered Agricultural Courses in Nineteen United States Junior Colleges

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Number of Colleges Offering</th>
<th>Number of Credits Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agronomy</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>Animal Science</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Animal Husbandry</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Botany</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Business Administration</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Chemistry</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Computer Science</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Economics</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>English</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Environmental Science</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Finance</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>General Science</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Graphic Arts</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>History</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Industrial Arts</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Journalism</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Psychology</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Physics</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>Sociology</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Social Studies</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Speech</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Speech and Drama</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

*The table above includes the most frequently offered agricultural courses in nineteen United States junior colleges.
Agricultural Curriculums -

(Continued from Page 211)
a practical basis, thus finally ac-
complished by the New York State
Agricultural Education Association, particularly the Long Island Institute.
Space limitations prevent our men-
tioning all the separate courses
brought to attention through the
survey, but the following are noted:

Washington Junior College (Minne-
sota) presents six hours of courses,
averaging five units each, which
were "tailored to meet individual
student needs. The college offers
help plan and conduct supervised
farming programs.

Henderson County Junior College (Texas) offers various vocational courses which are "aimed at the "mixed" agriculture." These unique devices pro-
vided work experience for students of laboratory and ran for 24 weeks. There were five students per class. "The student might enter any month without loss of part of the course. This training was experienced in that it was specially designed for the young men who need training to become estab-
lished in farming, but who could not afford to complete a one year or two-
term course.

State College (West Virginia) provided special half-semester intensive courses which may be offered in several areas. Most of these were pertinent to the two general poultry courses offered.

Many of the colleges, such as Modesto Junior College (California) and several others, such as "Lumberton and Echols County Schools" offered approximately 30 maximum units in a large number of courses. Their programs are offered in some courses, as were these two general poultry courses offered.

Superior Farming Emphasized

Superior Farming was given in Smith-Tobohp departments, some of which were located in South Dakota, (California) covered a wide range of enter-
prises. Most, however, were limited to a single enterprise, such as corn or truck crops. All but a handful of these courses were the same as the class-series-type instruction per week, but the crop enterprises were awarded for supervised farming work. The course content included the project or farm experience work, with a general picture of the farm, the 1 for corn, and the 1 for soil. Mt. San Antonio College (California) offered eleven such courses, each for a specific enterprise.

City College of San Francisco (Cal-
ifornia) offered many unique vocational Horticulture courses, its "Floriculture Course" could be offered up to a limit of six times (18 hours) per course. San Francisco (and the New York State Agricultural and Technical Institute, individually or collectively, offered a much greater array of related agriculture courses, in contrast to the one mentioned above.

THEME FOR APRIL

Administering the Program of Vocational Agriculture

The wheel of -

(Continued from Page 299)

just about as far toward the objectives of the course.

The illustrated lecture held the attention of both parents and students. I be-
lieve there was more interest among the Agriculture I boys and their parents than among the supervised farming pro-
gram this year.

499 Separate agricultural and related occupational courses scheduled, giving an average of 18.2 courses per school and an average of 9.4 special credits per school. The boys ranged from 83 in the junior high school and 835 in the high school. Each of the junior college agricultural programs specialized on one major, the "General Agricultural Curriculum." As with the Mississippi junior colleges, usually a single course or program was offered in each area such as a single dairy course, an animal husbandry course, a forestry course, a crop culture or a poultry course or a combination of two or more courses. In this respect, it is very similar to the programs where all courses were taken and the practices were taken care of. The basis or the type of instruction given in each curriculum would have much to do with the quality of such programs, especially when over the capacity of the study. Therefore, no attempt is made to rate or rank the curricula.

The Alternating Two-Year Plan

How to present an adequate pattern of agricultural courses with a decided emphasis on livestock and poultry and one of the main problems of the junior colleges. Most of the schools in the group are simply offering the instruction, especially in the two-year plan, but this is not the case. Possibly a re-
junction of this course partially compre-
sents the interest of the members of the course.

One system may be termed the "Animal course and specialized laboratory method," which is now a two-year course in the "Plant Production." Cover the entire area and the field, including soils, agricultural, irrigation, soil conservation, environment and market place. Such courses as Drowsik's Peat Coops and Field Crops are offered in laboratories which meet once a week only, but not once a week, at this time, it is considered as subject exclusively. Some laboratory experience may be spent early in the summer or partially in the second semester. The summer program may be the subject matter areas they practice.

Although this arrangement works very satisfactorily, the fact is that major agriculture, as Challey College, California, is prob-
ably the smallest institution that can be spent or even partially in lecture or class discussion. Animal courses are the same in most of the cases.

On the other hand, where it seems de-

tirable to institute this plan, which may well be presented in New York State to junior colleges covered in the survey, mention may be made of the following recommendation should attain the desired end (the ex-

In the same way. The disadvantages of this device are

499 separate agricultural and related occupational courses scheduled, giving an average of 18.2 courses per school and an average of 9.4 special credits per school. The boys ranged from 83 in the junior high school and 835 in the high school. Each of the junior college agricultural programs specialized on one major, the "General Agricultural Curriculum." As with the Mississippi junior colleges, usually a single course or program was offered in each area such as a single dairy course, an animal husbandry course, a forestry course, a crop culture or a poultry course or a combination of two or more courses. In this respect, it is very similar to the programs where all courses were taken and the practices were taken care of. The basis or the type of instruction given in each curriculum would have much to do with the quality of such programs, especially when over the capacity of the study. Therefore, no attempt is made to rate or rank the curricula.

The Alternating Two-Year Plan

How to present an adequate pattern of agricultural courses with a decided emphasis on livestock and poultry and one of the main problems of the junior colleges. Most of the schools in the group are simply offering the instruction, especially in the two-year plan, but this is not the case. Possibly a re-
junction of this course partially compre-
sents the interest of the members of the course.

One system may be termed the "Animal course and specialized laboratory method," which is now a two-year course in the "Plant Production." Cover the entire area and the field, including soils, agricultural, irrigation, soil conservation, environment and market place. Such courses as Drowsik's Peat Coops and Field Crops are offered in laboratories which meet once a week only, but not once a week, at this time, it is considered as subject exclusively. Some laboratory experience may be spent early in the summer or partially in the second semester. The summer program may be the subject matter areas they practice.

Although this arrangement works very satisfactorily, the fact is that major agriculture, as Challey College, California, is prob-
ably the smallest institution that can be spent or even partially in lecture or class discussion. Animal courses are the same in most of the cases.

On the other hand, where it seems de-

tirable to institute this plan, which may well be presented in New York State to junior colleges covered in the survey, mention may be made of the following recommendation should attain the desired end (the ex-

In the same way. The disadvantages of this device are

499 separate agricultural and related occupational courses scheduled, giving an average of 18.2 courses per school and an average of 9.4 special credits per school. The boys ranged from 83 in the junior high school and 835 in the high school. Each of the junior college agricultural programs specialized on one major, the "General Agricultural Curriculum." As with the Mississippi junior colleges, usually a single course or program was offered in each area such as a single dairy course, an animal husbandry course, a forestry course, a crop culture or a poultry course or a combination of two or more courses. In this respect, it is very similar to the programs where all courses were taken and the practices were taken care of. The basis or the type of instruction given in each curriculum would have much to do with the quality of such programs, especially when over the capacity of the study. Therefore, no attempt is made to rate or rank the curricula.

The Alternating Two-Year Plan

How to present an adequate pattern of agricultural courses with a decided emphasis on livestock and poultry and one of the main problems of the junior colleges. Most of the schools in the group are simply offering the instruction, especially in the two-year plan, but this is not the case. Possibly a re-
junction of this course partially compre-
sents the interest of the members of the course.

One system may be termed the "Animal course and specialized laboratory method," which is now a two-year course in the "Plant Production." Cover the entire area and the field, including soils, agricultural, irrigation, soil conservation, environment and market place. Such courses as Drowsik's Peat Coops and Field Crops are offered in laboratories which meet once a week only, but not once a week, at this time, it is considered as subject exclusively. Some laboratory experience may be spent early in the summer or partially in the second semester. The summer program may be the subject matter areas they practice.

Although this arrangement works very satisfactorily, the fact is that major agriculture, as Challey College, California, is prob-
ably the smallest institution that can be spent or even partially in lecture or class discussion. Animal courses are the same in most of the cases.

On the other hand, where it seems de-

tirable to institute this plan, which may well be presented in New York State to junior colleges covered in the survey, mention may be made of the following recommendation should attain the desired end (the ex-

In the same way. The disadvantages of this device are

499 separate agricultural and related occupational courses scheduled, giving an average of 18.2 courses per school and an average of 9.4 special credits per school. The boys ranged from 83 in the junior high school and 835 in the high school. Each of the junior college agricultural programs specialized on one major, the "General Agricultural Curriculum." As with the Mississippi junior colleges, usually a single course or program was offered in each area such as a single dairy course, an animal husbandry course, a forestry course, a crop culture or a poultry course or a combination of two or more courses. In this respect, it is very similar to the programs where all courses were taken and the practices were taken care of. The basis or the type of instruction given in each curriculum would have much to do with the quality of such programs, especially when over the capacity of the study. Therefore, no attempt is made to rate or rank the curricula.

The Alternating Two-Year Plan

How to present an adequate pattern of agricultural courses with a decided emphasis on livestock and poultry and one of the main problems of the junior colleges. Most of the schools in the group are simply offering the instruction, especially in the two-year plan, but this is not the case. Possibly a re-
junction of this course partially compre-
sents the interest of the members of the course.

One system may be termed the "Animal course and specialized laboratory method," which is now a two-year course in the "Plant Production." Cover the entire area and the field, including soils, agricultural, irrigation, soil conservation, environment and market place. Such courses as Drowsik's Peat Coops and Field Crops are offered in laboratories which meet once a week only, but not once a week, at this time, it is considered as subject exclusively. Some laboratory experience may be spent early in the summer or partially in the second semester. The summer program may be the subject matter areas they practice.

Although this arrangement works very satisfactorily, the fact is that major agriculture, as Challey College, California, is prob-
ably the smallest institution that can be spent or even partially in lecture or class discussion. Animal courses are the same in most of the cases.
Tennis shoes were divided up for an improved barn eliminating the prior inefficiency. Usually the improvements consist of remodeling and rearranging the old barn, but because of an expanded barn, a new barn, a barn building, etc., technical assistance on the construction was obtained from the local agricultural engineer.

Picture 2 shows some of the labor-saving improvements that corrected the snags of the past. The high ceiling eliminates stomping; wide feeders allow use of silage or grain and allow the Stallmen on each barn to work. Better feeding around the barn allows a cleaner barn.

Node the door permitting a cleaner environment to be housed in the barn. Gutters were built to proper size to allow later installation of a gutter system for the future.

The milk house is located in the barn making it more accessible in inclement weather.

Other improvements made but not illustrated include: a 2000 bushel grain storage, large stall room in the old and new barn. Note the large door permitting a cleaner environment to be housed in the barn. Gutters were built to proper size to allow later installation of a gutter system for the future.
Stories
in pictures...

Apprentice teacher at Hamilton, N. Y., visits local feed dealer to secure information to be used in guiding boys to plan a show for the cows on their farms as a part of their farming program. (Photograph by Harold L. Hooker.)

Apprentice teacher at Holland Patent, N. Y., checks on progress of Voc-Ag boy who is making a snow plow blade as a part of his farming program. (Photograph by Harold L. Hooker.)

Apprentice teacher at Skaneateles, N. Y., using homemade mannequin screen to show vocational boys pictures of farm skill they will acquire through Superland Farming Program. Rear projection screen made of treated glass or treated screen may be used without framing more. Screen shown is 4' 11" x 37'. Note position of projector at right of screen and mirror at left of screen opposite projector. Slide is projected against mirror which reflects picture to rear of treated screen. Projection distance can be shortened by using a plane-foam lens to projector lens. Pupil view screen in same manner they would a television screen. (Photograph by Harold L. Hooker.)

Picture legend, page 332

Featuring—
Administering the Program of Vocational Agriculture