Agricultural Education

March, 1972

Number 9

The Eighth International Seminar on Vocational Education and Teaching in Agriculture will be held August 7th to September 9th in Zollikofen near Berne, Switzerland. The theme of the seminar is "Toward a Modern Conception of Teaching." The main seminar runs from August 7 to August 23rd, with costs for room and board about $215. A Final Study Field Trip will be held from August 26 to August 29 for an additional $75, and $75 for a tour (from August 23 to September 9th). Since the seminar is at the University, you could probably complete the main course and fly home in time for school to begin.

The seminar offers an opportunity for Agricultural Educators from 150 countries to study together. If you desire further information and application materials you may contact the Editor, Dr. Ray Ajas at Sam Houston State University, Huntsville, Texas, or write directly to: Coordinator of the ICCEE, Division of Agriculture, 3003 Berne, Switzerland.

Applications must be received by May 30, 1972.

Roy Ajas

VOCATIONAL EDUCATION WEEK
February 13-19, 1972

Promotional materials are available from AVA Headquarters, 1130 H Street N.W., Washington, D.C. 20005. Order blanks are available in the January AMERICAN VOCATIONAL JOURNAL.

1971 NVATA CARRIER ORIENTATION WINNERS

Region I
Don Birdsell
Royston, Washington

Region II
Eugene R. Ruby
Broom, Colorado

Region III
Eugene L. Stanczak
Grawn, Wisconsin

Region IV
Glen H. Gottlieb
Humboldt, Illinois

Region V
Gary J. Angel
Waynesville, N. Carolina

Region VI
Oscar J. Harris
Lind, W. Virginia

Region VII

Glen McDowell, President, NVATA, received congratulations from Dan LaHaye (101) of 1971 National FFA President upon his receipt of the Hoosier American Farmer Degree, at the recent National FFA Convention held in Kansas City, Missouri.
TABLE OF CONTENTS
THEME—COMPETENCIES FOR CAREERS IN AGRICULTURE
Editorials
Young Professionals ResponsibilityRoy D. Dillon 219
Career Education for America’s YouthRobert M. Worthington 219
Therm for Future Issues220
Mr. Vo-Ag Teacher—I am Different!John P. Thompson 221
Fourth Annual AGIE Awards Program222
A Method of Grouping Topics For Instruction .Hershel J. Brown 224
Professional Knowledge of Farm Social Security BenefitsHershel J. Brown and George W. Leipziger 223
Agriculture in New York: A Profile of Agriculture Workers228
Agriculture and the Food IndustryJohn A. Reeder 229
Mechanics Competencies Needed in Ornamental Horticulture230
Occupations The A. Grant and Harry J. Leismer 226
Training Plans For Poultry EducationMartin B. McMullen 227
Fiftieth Anniversary Conference in West Virginia226
FIPA Up-Date Seminars228
Studies in Pictures Robert W. Walker 228
H. O. Sampson—A Pioneer In Agricultural Education William H. Evans 230
Research In Agricultural Education—Studies Completed In 1970-71 James T. Bunker 231
Include Leadership Skills In Job TrainingJ. C. Abtleson 235
Vocational Education In Brazil245
Jose Roberto da Silva 237
Competencies Analyzed Among Rations of 34 Beef Nooks In Food Processing238
Larry G. Simmers, Donald E. McGuire, and Glenn A. Stevens 238
Community Leaders Can Bridge The GapWilliam R. Dower 239
Helping The Academically Disadvantaged Succeed Robert W. Walker 241
Book Reviews241
More Assignments Available243
New Editorial Appointments and News of the Profession244

This publication is the monthly professional journal of agricultural education. The journal is printed by THE AGRICULTURAL EDUCATION, INC. and is printed at the Lowell Press, Inc., 900 East State Street, Athens, Ohio 45701.
SUBSCRIPTION PRICE $3 per year. Foreign subscriptions $4. Student subscriptions (including those institutions and students subscribing to TOP-Edge, J. W. Dodge, and H. E. F. Johnson, East Lansing, Mich.) AGRICULTURAL EDUCATION MAGAZINE, Box 344, Columbus, Ohio 43214.
Second-class postage paid at Athens, Ohio.
Send address and pictures to the Editor or to the appropriate Special Editor.

MANAGING EDITOR
ROY D. DILLON, University of Nebraska, Lincoln, Nebraska 68583
HARLAN R. REDMOND, Business Manager, Ohio State University, Columbus, Ohio 43210
J. ROBERT WARMEROOD, The Ohio State University, Columbus, Ohio 43210
SPECIAL EDITORS
NORTH ATLANTIC REGION DONALD E. MCGHIE, University of Idaho, Pullman, Idaho 99163
S. M. CURTIS, The Pennsylvania State University, University Park, Pennsylvania 16802
CENTRAL REGION MARTIN B. McMILLAN, University of Minnesota, St. Paul, Minnesota 55101
ROBERT W. WALKER, University of Minnesota, St. Paul, Minnesota 55101
SOUTHERN REGION JAMES S. ATTWOOD, Oregon State University, Corvallis, Oregon 97331
J. E. W. WATTS, A & M University, College Station, Texas 77842
PACIFIC REGION E. M. JUDGSON, University of California, Berkeley, California 94720
Dwight E. Kinsch, University of Idaho, Moscow, Idaho 83843
FLOYD G. MORRIS, The University of Arizona, Tucson, Arizona, 85721
BOYER, University of Oklahoma, Norman, Oklahoma 73069
BOOK REVIEWS
FRANK R. H. ROVER, State Department of Education, Columbia, South Carolina 29201
PITTSBURG
RICHARD E. DOUGLAS, University of Nebraska, Lincoln, Nebraska 68503

NAVY
JAMES B. WALL, Box 446, Lincoln, Nebraska 68508
J. DAVID MCCRACKEN, The Ohio State University, Columbus, Ohio 43210
INTERNATIONAL EDUCATION
RAY J. AGNEW, The Ohio State University, Athens, Ohio 45701

HISTORICAL
C. G. LORENC, Washington State University, Pullman, Washington 99163

EDITORIAL BOARD
GEORGE H. WOOD, University of Texas, Austin, Texas 78712
K. M. WILLIAMS, University of Georgia, Athens, Georgia 30602
M. R. J. WARMEROOD, The Ohio State University, Columbus, Ohio 43210
L. CLIFFORD NELSON, University of Maryland, College Park, Maryland 20742
D. H. HENDERSON, University of Arizona, Tucson, Arizona 85721
W. S. KENT, Ohio State University, Columbus, Ohio 43210
B. W. HOWARD, Western Reserve University, Cleveland, Ohio 44106
S. E. MILLER, Oregon State University, Corvallis, Oregon 97331
S. T. STOECKEL, Delaware State College, Dover, Delaware 19901
J. W. SANDERS, Utah State University, Logan, Utah 84322

CAREER EDUCATION FOR ALL AMERICA’S YOUTH
Robert M. Worthington
Assistant Commissioner
Bureau of Adult, Vocational and Technical Education
U.S. Office of Education

American education is in need of reform so it can better serve the needs of all the children of all the people! There are too many urban schools and too many rural schools in this country that have children who are scoring 12-36 months below grade level in basic skills. Our drop-out rates are too high. Absen-
teeism is too common. Violence, violence, physical assault on school personnel and fellow pupils are too preva-
lent. There are often doubts about the efficiency of public school systems. Taxpayers are increasingly voting down school bond issues, often knowing it will mean less of the system or severe curtailment of the school programs. If we are going to implement educational reform in the twenties, we must reduce education to meet the needs of all the people.

All of those who have dedicated our lives to the vocational and practical arts education must assume a vital role in the responsibilities of reforming American education at all levels. We at the Federal level earnestly solicit your ideas, your insights and your support as we undertake very positive initiatives in regard to career education at this juncture in our social-economic history.
Education has become the nation’s largest enterprise. It now costs $65 billion a year which surpasses our defense expenditure. The per pupil cost is roughly $1,000 a year, or $12.5 billion of dollars to get each youngster through the first twelve grades. Of the 3.7 million young people who left the school system in 1970-71, nearly 40 per cent lacked skills adequate to enter the labor force at a level commensurate with their academic and intellectual potential. Many left with little in the way of marketable skills. Nearly 150,000 young people dropped out of elementary and secondary school last year. Let’s assume on the average that they left at the end of the tenth grade. At $8,000 dollars per child to get them that far, the total cost to the nation is estimated at 9 billion dollars. There were 750,000 young people graduated from the high schools of America in the general curriculum, with little or nothing

(Continued on next page)
MR. VO-AG TEACHER - I AM DIFFERENT: An Analysis of Agribusiness Students In Vocational Agriculture

WHEN COMPARED TO THE FARM STUDENT, THE NON-FARM STUDENT COMES TO THE VO-AG CLASSROOM WITH:

- Less occupational experience
- A history of slightly less intensive involvement in school and extracurricular activities
- A same desire to explore an occupational area rather than having already decided to make agriculture his career area
- An interest in broadly defined conservation careers rather than in production agriculture
- A little more consistency in identified career areas
- Higher career aspirations, lower expectations

...a significantly lower vocational maturity score
- Relatively equal grades in academic courses but lower grades in vo-ag

THEMES FOR FUTURE ISSUES

June — Teaching Methods
July — Planning The State and Local Program
August — Program Evaluation
September — A Guidance Role
October — In-Service Education
November — New Vocational Education in Transition
December — Post Secondary Education

John Y. Kompson
Iowa State University
Ames, Iowa

MARCH, 1972
The AGRICULTURAL EDUCATION MAGAZINE

A METHOD OF GROUPING TOPICS FOR INSTRUCTION:

Essential Knowledges and Skills for Agricultural Business Supplies

Hollie B. Thomas, Assistant Professor of University of Illinois

The grouping of materials in courses to form units as a means of organizing material is a topic of concern among agricultural educators since the inception of vocational agriculture. The organization of material presented has been from the unit or unit or course to a more complete, "on-the-farm" course. At the present time, variations of these three basic approaches are being used to teach academic agriculture.

Traditional methods used to group program areas into instructional units include: (1) the enterprise approach, where each unit is comprised of a phase in the production of a particular enterprise, and (2) the scientific (or principle) approach, where a principle, such as preparing a seedbed for all crops, is repeated to produce in agriculture. However, the units of instruction are fairly general; however, this is the case for the development of teaching units and training plans for agricultural supply work experience. Here, the problem is compounded by the variety of agricultural supply businesses, including such diverse distributors as seed, feed, fertilizer, grain, and petroleum products.

A New Approach

The statistical relationship of the sales given by salespeople in the sales of agricultural supply business to the knowledges and skills evidenced by an employee in previous work experience is being analyzed. The salespeople were evaluated on their job performance and the factors identified which affected their success. A 100 item questionnaire was developed specifically for this purpose, and contained items concerning the knowledges and skills considered essential to agricultural supply employees. Responses were made on a nine-point continuum, ranging from "very easy" to "very difficult". The questionnaire was mailed to employees in agricultural supply businesses in which the program student-trainees were placed for on-the-job work experiences. The employers were asked to rate the degree to which the various knowledges and skills are essential for an employee to have if he is to succeed in that endeavor. The employers, therefore, selected, represented businesses in seed, feed, fertilizer, petroleum, and various combinations of these businesses. Knowledges and skills receiving a rating of 4.0 or greater were considered to be essential attributes for employees in these fields. These items, then, were submitted to the statistical technique of factor analysis, whereby the items are grouped into categories, called factors based on their statistical relationship.

The factor analysis yielded six meaningful factors (groups of statistically related items) of knowledges and skills. These factors are listed below, along with a description of each of the factors.

Factor I: Knowledges and Skills in Feed, Seed and Fertilizer Businesses

This factor includes agronomic knowledges and skills needed by employees in certain agricultural supply businesses, including:

- Crop and soil relationships

Examples:
- Know the principal grains of the state

Factor II: Livestock Industry Knowledges and Skills

This factor includes knowledges and skills essential to employees in the livestock industry, including:

- Sheep and swine husbandry

Examples:
- Know the principal grains of the state

Factor III: Sales and Business Operations

This factor includes knowledges and skills essential to employees in an agricultural supply business regarding the operation of the business, including:

- Sales and business operations

Examples:
- Know the principal grains of the state

Factor IV: Management of Agricultural Supply Businesses

This factor includes knowledges and skills that persons in managerial positions may need to know or be able to do, including:

- Management of agricultural supply businesses

Examples:
- Know the principal grains of the state

Factor V: Management of Agricultural Supply Businesses

This factor includes knowledges and skills that persons in managerial positions may need to know or be able to do, including:

- Management of agricultural supply businesses

Examples:
- Know the principal grains of the state

Factor VI: Management of Agricultural Supply Businesses

This factor includes knowledges and skills that persons in managerial positions may need to know or be able to do, including:

- Management of agricultural supply businesses

Examples:
- Know the principal grains of the state
AGRICULTURE IN NEW YORK:
A Profile of Agribusiness Workers and Firms

Arthur L. Berkley
Assistant Professor of Agricultural Economics
Cornell University, Ithaca

Students in secondary level agriculture are being prepared to enter agricultural, i.e., agribusiness, occupations. Yet many aspects of the nature and extent of these occupations are undefined. This is especially true for the non-farm, i.e., processing and supply of farms, and firms engaged in primary processing.

PURPOSE OF THE STUDY
To provide a more comprehensive body of knowledge about agribusiness in New York that may be used as a basis for manpower planning and organization.

METHODOLOGY
Agribusiness production (farm), supply and processing firm, and worker data were collected in the 9 county area of Rochester, New York, the population studied. The operational definition of agribusiness was based on a number of factors, including the supply of inputs, and the demand for outputs. Interviews and observation were used to gather data on occupational inputs, workers engaged in processing, and labor requirements.

FINDINGS
Due to the extensive nature of the study, the writer has selected for presentation only those findings having implications for manpower planning.

AGRICULTURAL WORKER PROFILE
1. The typical agribusiness worker was a male who was born in the geographical area where he was employed, had a farm background, and lived in a rural area.
2. Over three-quarters of farm production and supply workers, and over one-half of processing workers had firm background, and job satisfaction.
3. The median age for farm production workers was 18 years. For production and supply workers, 41.7 years.

AGRICULTURAL PRODUCERS
1. Among the 217 firms, 103 firms reported hiring workers. Of these firms, 20 percent of their work force was farm related.
2. More than half of all firms had sales of less than $50,000.
3. The median age for farm production workers was 32 years. For processing and supply workers, 29 years.

CONCLUSIONS
1. More than half of all workers, especially those in small firms, are required to do a variety of tasks.
2. The majority of all workers work in small firms.
3. Nearly all workers have had some formal education, and many have had substantial work experience.
4. Agribusiness workers are generally dissatisfied with their jobs except in the areas of pay and promotion opportunities.
5. In general, agribusiness workers were not satisfied with their jobs, except in the areas of pay and promotion opportunities.
6. Agribusiness workers were generally satisfied with their jobs, except in the areas of pay and promotion opportunities.

RECRUITMENT PROBLEMS AND PRACTICES
1. Only 9 percent of agriculture firms are engaged in recruitment activities. Of these, 13 percent report difficulty in finding qualified workers.
2. Of the 217 firms, 103 firms reported hiring workers. Of these firms, 20 percent of their work force was farm related.
3. The median age for farm production workers was 32 years. For processing and supply workers, 29 years.

CONCLUSIONS
1. More than half of all workers, especially those in small firms, are required to do a variety of tasks.
2. The majority of all workers work in small firms.
3. Nearly all workers have had some formal education, and many have had substantial work experience.
4. Agribusiness workers are generally dissatisfied with their jobs except in the areas of pay and promotion opportunities.
5. In general, agribusiness workers were not satisfied with their jobs, except in the areas of pay and promotion opportunities.
6. Agribusiness workers were generally satisfied with their jobs, except in the areas of pay and promotion opportunities.

RECRUITMENT PROBLEMS AND PRACTICES
1. Only 9 percent of agriculture firms are engaged in recruitment activities. Of these, 13 percent report difficulty in finding qualified workers.
2. Of the 217 firms, 103 firms reported hiring workers. Of these firms, 20 percent of their work force was farm related.
3. The median age for farm production workers was 32 years. For processing and supply workers, 29 years.

CONCLUSIONS
1. More than half of all workers, especially those in small firms, are required to do a variety of tasks.
2. The majority of all workers work in small firms.
3. Nearly all workers have had some formal education, and many have had substantial work experience.
4. Agribusiness workers are generally dissatisfied with their jobs except in the areas of pay and promotion opportunities.
5. In general, agribusiness workers were not satisfied with their jobs, except in the areas of pay and promotion opportunities.
6. Agribusiness workers were generally satisfied with their jobs, except in the areas of pay and promotion opportunities.

RECRUITMENT PROBLEMS AND PRACTICES
1. Only 9 percent of agriculture firms are engaged in recruitment activities. Of these, 13 percent report difficulty in finding qualified workers.
2. Of the 217 firms, 103 firms reported hiring workers. Of these firms, 20 percent of their work force was farm related.
3. The median age for farm production workers was 32 years. For processing and supply workers, 29 years.
MECHANIC COMPETENCIES NEEDED IN ORNAMENTAL HORTICULTURE OCCUPATIONS

Are your ornamental horticulture graduates prepared to do their best with mechanically oriented problems to the trade? Are your students prepared in the mechanics competencies that prospective employers’ businesses demand? Have you sought assistance of the horticultural employers planning the horticultural mechanics course of study?

According to a survey of 53 randomly sampled horticulturists in the twelve town area served by the Trumbull (Connecticut) Regional Agricultural Center, mechanics competencies view- ed as needed by prospective employers vary with the specific business type involved. Employers interviewed were involved in seven horticultural occupational areas: garden center, eastern golf courses, greenhouses and landscaping, nurseries, farm maintenance, park service, and tree service.

Employers interviewed were asked to consider sixteen groups of mechanics competencies and to eliminate those not important for his employees. They were asked to place priorities on the areas checked as important and to rate the groups from most important to least important. The sixteen groups were: equipment operation, spraying and grooming, tool selection, grass and gas equipment, backhoes, irrigation equipment, grass care equipment, air compressors and pneumatic powered tools, steam generators and boilers, engine and irrigation systems, mechan- ically operated environmental controls, equipment operation, small engines, hydraulic systems and controls, plumbing, electricity, construction, tool fitting and repairing, and arc and gas welding.

Using a frequency count and the Likert eight-point Test, data gathered from employ- ees responses were grouped and placed on priority levels ranging from one (most important) to five (least important) within each occupational area. The occupational areas, as well as across the total occupational field or ornamental horticulture.

According to the results of the study, employers in all seven occupational areas indicated that competencies in the spraying and spreading equipment, and equipment operation competency groups were of high priority or im- portant to their employees. Although these two competency groups were universally important, at least one group in each competency area and pneu- matic powered tools was universally of little or no importance to the emp- loyers in all occupational areas. Competency groups of steam generators and boiler systems, and mechanical- ly operated environmental controls were considered of little or no importance in all but one occupational area, that being the greenhouse oriented businesses. Arc and gas welding was considered moderately important by the employees in only the golf course occupational area, but considered of no importance by greenhouse operators and of lesser importance by the employers in the remaining five occupational areas.

Furthermore, the data showed the small engine competency group was considered of moderate importance by all employers except those in the garden centers. All prospective horticultural and park service employees considered grass care tool competencies to be of high priority for their employees. In the revision of general ornamental horticulture courses of study, teach- ers and specialists might consider the inclusion of competence groups. It appears that there are groupings that import- ant for all groups except (1) air compressors and pneumatic powered equipment, (2) steam generators and boiler systems, and (3) arc and gas welding. Likewise, respondents would highly recommend instruction in cer- tain occupational groups, those being (1) equipment operation, (2) spraying and spreading equipment, (3) grass care equipment, (4) irrigation and sprinkling systems, and (5) small en- gines. However, the individual ar- chitectural units support ornamental horticulture courses of study should be based upon the occupational re- jectives of the students.

Of the knowledge and attitudes being classified as courses of study in agri- culture which in the case of D. E. programs would be a part of the training plan.

Horticulturist's, skills and attitudes needed and use group instruction (course of study) if enough individuals needed the same preparation. Much is available in the literature to help determine if there is a commonality of knowledge and attitude needed in the various agricultural occupa- tions.

My emphasis on training plans has been on the activities to be performed on the job. The classroom activities are important but can be concentrated on those with higher classroom and classroom attitude. The training plans should be what the student in training, job, and knowledge of skills and attitudes. The D. E. training plan should be revised to include what is a major part of the student’s education.

Concerning narrow content, it bothers me that what takes place in one business or one town could be duplicated but is not. The limits are on what a student in agriculture just as the student's education.

The study of horticulture programs should be not to the advantage of maintaining education, but it has the disadvantage of a very narrow preparation. I think the various factors of a student’s education are very important in the classroom and in the classroom as well. Agriculture students should be going to the farm program. A limited farming program could mean a limited course of study. The situation is that a student is not limited to the farm program. The situation is that a student is not limited to the farm program. The situation is that a student is not limited to the farm program.

Even worse, a shortage of training sta- tionary and the student who added clothing studying about clothing, the student who added horticulture students who added clothing studying about clothing. The situation is that a student is not limited to the farm program. The situation is that a student is not limited to the farm program. The situation is that a student is not limited to the farm program. The situation is that a student is not limited to the farm program.

In agriculture there are many com- plex programs and much common practice. The student can very profitably spend some time studying (Concluded on next page)

Lee P. Grant
Department of Agricultural Education
The Pennsylvania State University
University Park, Pennsylvania

Harry J. Hoerner
Department of Agricultural Education
The Pennsylvania State University
University Park, Pennsylvania

Lee P. Grant

MARCH, 1972

THE AGRICULTURAL EDUCATION MAGAZINE
Fiftieth Anniversary Conference
In West Virginia

Sixty-two former teachers of vocational agriculture in West Virginia attended the 50th anniversary conference held at Cedar Lakes, June 21-23, 1971. Eight of the 15 living teachers who attended the conference held at Murtle Park, Maryland, (adjacent community to West Virginia and a famous summer resort at that time) in 1921 were present. Twenty-six of the states and the Districts of Columbia were in attendance.

A History of Vocational Agriculture in West Virginia, 1917-71, prepared by W. H. Wayman, former state supervisor of vocational agriculture, was presented to all in attendance. A total of 600 different teachers have taught vocational agriculture in West Virginia since the program was started in 1917 in nine departments. Of this number, 117 are currently employed as a teacher, teacher educator or supervisor in vocational agriculture in West Virginia. Of the 575 former teachers, 194 are deceased, six unknown, five in military service, three in foreign service. 227 living in West Virginia, 190 living in 28 other states or the District of Columbia. Fifty-six former teachers continued their education and earned a doctorate and at least 276 earned a master's degree.

The former teachers have been engaged in numerous occupations including school administration, other high school and college teaching, farming and off-farm agricultural occupations plus many miscellaneous positions.

FVA UP-DATE SEMINARS
On March 6-10, 1972, key agricultural educators, state supervisors and FFA officers will meet in Washington to plan a series of 24 state and regional meetings, to be held later in the year. Each teacher of vocational agriculture, State Staff member, and FFA chaplain president will be involved in at least one of the 24 sectional meetings. The major thrust will be to cooperate in making the FFA as effective as possible.

See the proceedings of the meetings taking place in local programs in Agriculture, Animal Science, and Natural Resources.

W. H. Wayman
State Supervisor
Vocational Agriculture

Robert W. Walker
University of Illinois
H. O. SAMPSON

A Pioneer in Agricultural Education

H. O. Sampson

One could readily ask himself before attempting an article of this kind whether thirty years of intimate contact with a man is sufficient to say you knew him, or whether thirty years of familiarity with his actions and mental processes might obscure the brilliancy of his achievements and set up in a tedious repetition of the common place.

To put your own yardstick along the stretch of memory of a man you greatly admired, kicking off in a kind of blind alley in evoking how much you approved and how much you found less than worthy is not an easy task particularly when that person was teaching vocational agriculture before you were even born. In historical terms incoherencies inherent in the nature of "the pioneers" are naturally heightened by social order and legislative change. By severely qualifying the triumphs and the failures we may get both a richer appreciation and a closer understanding of the reality that concerned the subjects of these articles.

Sketchy and inadequate as this account must be I can only hope that it is honestly consistent with his attributes, roughly systematic, generally inclusive, and distinctly interesting to be reading, but above all, coinciding with the recollection of readers who also knew the subject of this brief discourse.

Harry Oscar Sampson, State Supervisor of Vocational Agriculture of New Jersey from 1918 until his retirement in 1950 was born in Dover, Wisconsin, April 21, 1879, and died January 1, 1958. He grew up on a farm near Mason City, Iowa, completed high school and attended Iowa State College, receiving a B.S. degree in 1903 and a Bachelor of Science degree in Agriculture in 1909.

There is some controversy to his claim that the Waterford Agriculture Department was first in the USA and that he was the first high school agriculture teacher. Nevertheless, it is a fact that he did teach "a course in agriculture" in the high school at Waterford, Pennsylvania from 1904 to 1906 with some degree of success, and that an article written by a Mr. Dick Cowby, Assistant in Agricultural Education to Dr. True's Office of Experimentation, USDA, was published in the USDA Yearbook: "as far as I know the only published report up to this time about this early experiment in high school agriculture" (editors note: Actual quotation from H. O. Sampson memo to Dr. Rufus Stimson). He recognized, of course, that there were special agricultural schools established earlier; as for example, Dunn County School of Agriculture in Wisconsin with K. C. Davis as principal.

In 1906, in an article in the Journal of Instructional Officers in Trenton, New Jersey, Sampson wrote: "It is significant that he was aware of the fact that "agriculture cannot be taught until the pupils are grounded in the necessary elementary knowledge. He stated, "in order to accomplish the object of the letter of application to Rutgers, it is a matter of a few years, but five years or more seems to have satisfied all but a small minority of the pupils."

There is more positivity to his later endeavors in the field of agricultural education. Sampson, for example, was hired by the Office of Experimentation to "teach agriculture in high and grade schools." During the summer, they sent him to Teacher Institutes in several states. The idea was to show the "untrained untrained country schools that agricultural instruction need not be solely from books." From September 1907 (1907-1908) he was able to establish an agricultural high school in an abandoned Friends School in Calvert, Maryland. Sampson, at Waterford, "secured a few books on the subject."

One could ask the question of how did agriculture teach children out to the farms on field trips, judging contests, etc. "Not content to slip into the groove and rats of governmental responsibilities and bureaucracy" he accepted a position of "International Correspondence Schools, Scranton, Pennsylvania, where he spent the field preparation of that correspondence courses in agriculture and wrote agricultural texts for worldwide distribution. In all over thousand pages of printed materials were published.

In 1910 he became Professor of Agriculture at the Washburn Normal College, Rockhill, South Carolina girls school where his efforts were directed "to give the students ideas, facts, and methods that they could use in teaching general agriculture who they became teachers." Here he also found a bride, the lovely and charming Harriet Louise Nolen who bore him two children.

In August 1918, he came to New Jersey as State Supervisor and Vocational Teacher and within a short time, by my judgment, established his headquarters at the College of Agriculture at Rutgers, University in New Brunswick. In 1922 he was named Assistant Commissioner, Instructional Officers in Trenton, New Jersey, and steadily maintained that "the right attitude is the foundation of any teaching staff that has accumulated. It should also be stated that having an effective educational program in agriculture, he exerted every effort within his power to keep him happy, attracting in the very small teacher retirement plan that characterized the Vocational Agricultural teaching staff in New Jersey until the price of farm products was reduced to prices of the twenties, and forties, some might be so unkind as to say that he did not do enough, switching over to schools that might have benefited from a new challenge, but I find this conclusion alien to his basic character. He was seldom incited an incompetent teacher, preferring to encourage those who were formed well and sincerely, while the less fortunate to work out of the hole they have gotten themselves into.

He strongly believed that a Vocational Agricultural teacher should understand the economy of his community and utilize the "true culture ethics that the College of Agriculture's program in floriculture and landscaping received the acclaim it so richly deserved and later was to be emulated in many other states. With his teaching staff he was quick to praise and slow to criticize. He conducted a system of Weekly Reports and after six months, he was fairly well assured that his Vocational Agriculture teachers, which, incidentally, he read before they were filed, and any teacher receiving a "pointing an achievement worthy of note was likely to receive a letter of commendation that same day. The ability to inspire confidence in all of his employees was one of his outstanding attributes. I would confess to have some slight doubt as to whether he was a dynamic forceful teacher, but when he wrote few could catch his facility to express ideas in simple, unqualified prose.

High school students did not need a dictionary to understand his textbook, Effective Farming and Farm Shop, both of which were widely adopted in the early days.

One of his unique achievements was to be unusually efficient in assessing the requirements and in securing the "right man" for the specific teaching situation. He was not averse to relating other services or experiences gotten from out-of-state, but quick to get a "memorandum of understanding" with the Extension Service and other agencies. He was looking for those that he felt could do a "solid teaching job that was rewarding and profitable for them.

Teacher education. He was always particularly aware of the problems of keeping agricultural teachers up-to-date and utilized several unusual methods and administrative procedures to accomplish the upgrading of teachers. From the very beginning the State Plan called for a two-week summer conference of Vo-Ag teachers with attendance considered an essential part of the annual expense (reimbursable). Except for one-half day and evening session devoted to the Vo-Ag Teacher Association Business Meeting and social activity these summer conferences were devoted exclusively to educational topics. In the early days it took the form of a so-called conference-on-wheels - planned experiences, markets, etc. to study the agriculture of the state. Later under the catch-all catalog assembly of "Recent Developments in the Field of..." the entire personnel of one of the departments for example, the College of Agriculture, would be utilized to bring all of the latest research findings to that department. The list of the topics of the teachers of Vocational Agriculture. Graduate credits were all..."
 included leadership skills

in job training

by c. albertson
teacher education
louisiana state university

the majority of students enrolled in vocational agriculture will make their livelihood from jobs in industry, not farming. also, many of those engaging in farming and ranching will supplement their incomes with off-farm jobs. thus, we are impelled to gear all-day instruction to the employment needs of today's youth. job training is the order of the day.

a "new man" is needed for the "new age" in which we presently find ourselves. business is looking for the individual who has the most to offer, who can contribute to contemporary society.

opportunities for employment as a common laborer or unskilled worker are not great in our total society. odds of making a satisfactory livelihood without specialized training are not good. even the skilled employee has difficulty in succeeding if he does not evidence traits of commonality and of leadership.

failure to prepare oneself and to stay abreast of the situation are serious shortcomings which one should guard against. the cost is an expenditure of time and effort. however, a neglect of these essentials is actually more expensive in the long run. there is a widespread feeling that computerization and automation will replace brainpower. no doubt they will help do many tasks more efficiently, but it has not been possible to develop a computer that will think and it is doubtful that one ever will be produced.

the above the level of common laborer or the initial entry step in agri-business the individual must evidence leadership and potential for development into a trusted and worth-while employee. most individuals have time characteristics to some degree. it is incumbent upon the instructor to project a curriculum which will encourage the development of business leadership. to accomplish this some attention must be given to the end product desired. most leadership is not the result of accident primarily.

leaders must command the respect of followers. they must be qualified and trained so that they may capture and hold the interest of the group with which they are operating. such persons only are in a position to provide the type of guidance needed by the general public.

in order to gain the respect of followers there are some basic principles and traits of leadership one should follow. these include: dependability, enthusiasm, loyalty, consideration for others, honesty, communication, and being up-to-date.

1. dependability — always be ready to assume responsibility for those things with which he has an obligation. be prompt in carrying out assignments and in answering communications on time. be industrious and exhibit a willingness to work hard and to sacrifice so that the task may be carried through to a successful completion.

2. enthusiasm — believe in what one is doing and what he asks others to do. exhibit optimism even in the face of difficulties. assist others to visualize the significance of the task to be accomplished. assist them to participate in. encourage them. show that he believes they are worthwhile. exhibit eagerness to get at the task and to see it through to its completion. match talk with action. don't just talk a good game; perform more than your share.

3. loyalty — set an example of full-fledged loyalty to one's superior, his associates, his clients, his company and to those employers and people he serves under his charge. support the program and its policies once they have been established. refrain from bringing criticism or backbiting. back fully the organization of which one is a member.

4. consideration for others — respect the personality and worth of others. be considerate of their needs and limitations. make provisions for differing views on a subject. show kindness and appreciation for one's efforts. give attention to details.

5. honesty — be true to oneself and to his superiors. live above reproach in word and deed. give full credit for time and talent. fulfill promises. other obligations. be fair in all dealings. be industrious.

6. communicativeness — present views in terms understood by the group. involve others in planning and then let the fellow-through of activities. do not hesitate to delegate responsibility. utilize the ideas of others.

7. keep up-to-date — know what the task involves. keep growing mentally. learn as much as possible and be informed before conducting a meeting on problems. be a student of the field. the cultivation of these three qualities of leadership are not the responsibility solely of the vocational teacher. the entire school faculty should share in this worthwhile endeavor. it is the duty of all educational personnel to acquaint themselves with the great opportunities that will help the individual become a useful citizen and a valued employee.

all teachers can and should strive to develop leadership potential in each of their class members. certain abilities are especially amenable to use for this type of activity. however, it seems that the social sciences and language arts are especially amenable to use for this type of activity. vocational agriculture is about 54 year old in the United States, and has found no counter part in any other country. with advice and technical help from the united states, the brazilian government is starting to introduce vocational agriculture in high schools and the universities throughout brazil. teachers were to be sent to the united states to study and develop vocational skills and then upon their return, they would be placed in a vocational teacher training center. in the center, these well trained professionals will be training teachers in a two year program, to become vo-ag teachers at the secondary level. the training program will be based on the basic fundamentals courses in all phases of agriculture, and of course, the training program will be based on the needs of each community.

this program adds a new dimension to the process of learning, and, on this program is off the ground, there will be a rapid change in the brazilian economy and the social order. there will be more concern for the adequacies of practices of occupational and vocational fields and technical education. through an outstanding education a lot of people can discover new business and develop "self-employment" which is the most satisfying. this educational process may be slower because the education background is based mainly on the european system where there is a difference between the consumer and the conqueror. the feudal society is a good example, full of heredity and tradition.

brazil has received much foreign aid. why do they not succeed? the answer is very simple, human resources development. the whole problem resides in the fact that environment for education has not been adequate. financial assistance granted for education has been largely on a government-to-government basis. unfortunately, the brazilian government has been handicapped by lack of funds, lack of continuity and often by basic conflicts with political objectives. traditionally the economic proven behind the "throne" have shared education for the masses. they have equated education with awareness, and awareness with discontent. however the technological revolution in communication and transportation has created awareness without educational opportunity which is doubly dangerous.
Large food processing plants in Pennsylvania have job specifications for about 20 occupations. A survey of five businesses in each of five major commodity areas revealed differences but showed far more commonalities among knowledge and skills required for entry employment and for advancement in each job classification.

Table 1 lists all of the job titles used in manufacturing the five kinds of food products. Table 2 shows five groups of competencies for each cluster, the job titles in most processing, as an example of the ratings. The symbol L means low competency required. Low average ratings were in the bottom fourth of the distribution. High ratings were in the upper fourth. Data for the 1960 study were furnished by managers responsible for employment interviews in 25 food manufacturing plants in southeastern Pennsylvania. In the five dairies products business, about 1000 persons were employed. The meat processing plants had 1600 employees, poultry and eggs 1300, fruits and vegetables 3100, and the beverage and flour mills 300 employees.

The principal statistical procedure was factor analysis of ratings among uniformly similar lists of 24 types of job competencies. The managers filled out a data schedule for each job title used in their plants. The competencies were computed analyzed by each type of food product and for all products. Separate summaries were made for the

Dr. Leroy C. Smelitz is head teacher of agriculture at Tri-Valley High School, Valley View, Pennsylvania.

Dr. Donald E. McCraight is Assistant Professor of Agricultural Education, University of Rhode Island.

Dr. Glenn Z. Stevens is Professor of Agricultural Education, The Pennsylvania State University.

Dr. Leroy C. Smelitz

Dr. Donald E. McCraight

Dr. Glenn Z. Stevens

Women perform many jobs in meat processing, but the process is still a dirty, arduous, and demanding job.
COMMUNITY LEADERS CAN BRIDGE THE GAP

William R. Dowdridge
Vocational Agriculture Teacher
Mt. Pleasant High School
Mt. Pleasant, Tennessee

Robert W. Walker
Division of Agriculture Education
University of Illinois Urbana

Students who have not learned have not been taught. The reason why when students learn. This sobering fact must be brought home to each teacher who wishes to help academically disadvantaged students. They are our classmates. Because they were not taught properly in the basic school skills—reading, speaking, writing, and mathematics—we must teach them these skills just as we taught them to our own children. This is partly done in the science classes. The teachers are learning to teach so they will be better able to teach science to our students. Supportive teachers of English and mathematics integrate their instructional activities at the school. The procedure for implementing a program is as follows:

1. Inventory of the students' academic skills and their need to improve. This inventory should be conducted by the teacher of English, math, science, and social studies. It should be based on the results of previous tests, the teacher's observations, and student interviews. The inventory should be conducted in a non-threatening environment, such as a one-on-one conference with the student. The inventory should include questions about the student's reading ability, writing ability, math ability, and science ability. The inventory should also include questions about the student's interest in school, their attitudes toward school, and their goals for the future.

2. Selecting the students to be taught. The students to be taught should be selected based on the results of the inventory. The students who are the most at risk should be selected first. The students who are the least at risk should be selected last. The students who are selected should be given a course of study that is appropriate for their needs. The course of study should be designed to help the students learn the basic skills that they need to succeed in school. The course of study should be designed to help the students learn the basic skills that they need to succeed in school.

3. Developing a course of study. The course of study should be developed by the teacher of English, math, science, and social studies. The course of study should be designed to help the students learn the basic skills that they need to succeed in school. The course of study should be designed to help the students learn the basic skills that they need to succeed in school.

4. Implementing the course of study. The course of study should be implemented by the teacher of English, math, science, and social studies. The course of study should be implemented in a way that is appropriate for the students' needs. The course of study should be implemented in a way that is appropriate for the students' needs. The course of study should be implemented in a way that is appropriate for the students' needs.

5. Evaluating the results of the course of study. The results of the course of study should be evaluated by the teacher of English, math, science, and social studies. The results of the course of study should be evaluated by the teacher of English, math, science, and social studies. The results of the course of study should be evaluated by the teacher of English, math, science, and social studies.

The procedure for implementing a program is as follows:

1. Inventory of the students' academic skills and their need to improve. This inventory should be conducted by the teacher of English, math, science, and social studies. It should be based on the results of previous tests, the teacher's observations, and student interviews. The inventory should be conducted in a non-threatening environment, such as a one-on-one conference with the student. The inventory should include questions about the student's reading ability, writing ability, math ability, and science ability. The inventory should also include questions about the student's interest in school, their attitudes toward school, and their goals for the future.

2. Selecting the students to be taught. The students to be taught should be selected based on the results of the inventory. The students who are the most at risk should be selected first. The students who are the least at risk should be selected last. The students who are selected should be given a course of study that is appropriate for their needs. The course of study should be designed to help the students learn the basic skills that they need to succeed in school. The course of study should be designed to help the students learn the basic skills that they need to succeed in school.

3. Developing a course of study. The course of study should be developed by the teacher of English, math, science, and social studies. The course of study should be designed to help the students learn the basic skills that they need to succeed in school. The course of study should be designed to help the students learn the basic skills that they need to succeed in school.

4. Implementing the course of study. The course of study should be implemented by the teacher of English, math, science, and social studies. The course of study should be implemented in a way that is appropriate for the students' needs. The course of study should be implemented in a way that is appropriate for the students' needs. The course of study should be implemented in a way that is appropriate for the students' needs.

5. Evaluating the results of the course of study. The results of the course of study should be evaluated by the teacher of English, math, science, and social studies. The results of the course of study should be evaluated by the teacher of English, math, science, and social studies. The results of the course of study should be evaluated by the teacher of English, math, science, and social studies.

The procedure for implementing a program is as follows:

1. Inventory of the students' academic skills and their need to improve. This inventory should be conducted by the teacher of English, math, science, and social studies. It should be based on the results of previous tests, the teacher's observations, and student interviews. The inventory should be conducted in a non-threatening environment, such as a one-on-one conference with the student. The inventory should include questions about the student's reading ability, writing ability, math ability, and science ability. The inventory should also include questions about the student's interest in school, their attitudes toward school, and their goals for the future.

2. Selecting the students to be taught. The students to be taught should be selected based on the results of the inventory. The students who are the most at risk should be selected first. The students who are the least at risk should be selected last. The students who are selected should be given a course of study that is appropriate for their needs. The course of study should be designed to help the students learn the basic skills that they need to succeed in school. The course of study should be designed to help the students learn the basic skills that they need to succeed in school.

3. Developing a course of study. The course of study should be developed by the teacher of English, math, science, and social studies. The course of study should be designed to help the students learn the basic skills that they need to succeed in school. The course of study should be designed to help the students learn the basic skills that they need to succeed in school.

4. Implementing the course of study. The course of study should be implemented by the teacher of English, math, science, and social studies. The course of study should be implemented in a way that is appropriate for the students' needs. The course of study should be implemented in a way that is appropriate for the students' needs. The course of study should be implemented in a way that is appropriate for the students' needs.

5. Evaluating the results of the course of study. The results of the course of study should be evaluated by the teacher of English, math, science, and social studies. The results of the course of study should be evaluated by the teacher of English, math, science, and social studies. The results of the course of study should be evaluated by the teacher of English, math, science, and social studies.

A publication by the Forest Farmers Association. This manual contains a wealth of information concerning forests and forestry. Many of the individuals in the forestry profession are aware of the articles in their area of specialization. Some of the topics in this edition are:

- Forests in the environmental age
- Basic considerations in establishing a profitable operation
- Management techniques and methods for pine and hardwoods
- Multiple use opportunities in forest management
- Protection: modern methods and equipment
- Harveting in the age of mechanization
- Plus how to qualify for timber conservation programs
- A variety of topics related to forestry

This publication is intended for use by foresters and is an excellent tool for anyone interested in the forestry profession.

Robert F. Brown University

OUR NATIONAL RESOURCES by P. W. McNall and Hardy R. Kocher

The third edition of this book covers a topic that has been in process for a number of years. It has been revised and updated to reflect the changes in our natural resources and to meet the needs of today's students. The book is written in a clear and concise manner and is designed to provide a comprehensive understanding of the natural resources of the United States. It is an excellent resource for students in the field of natural resources.

The book is divided into four major sections:

- Introduction and History
- Natural Resources of the United States
- The Use of Natural Resources
- The Management of Natural Resources

This book is an excellent resource for students in the field of natural resources.

The AGRICULTURAL EDUCATION AVAILABLE

Additional information received by the Editor concerning available assistance is included in this issue.

Ohio State University

Research Assistant (4-6); 12 mo; July, September; one-third or one-half salary; $5000-$6000; for students; Masters, Ph.D.; Apply to Dr. Ralph E. Bender, Chairman, Department of Educational Administration.

Contribution and conclusion. I shall have to others better informed than I about the best ideas and practices in agricultural education and more specifically in Agricultural Education:

- The Newagis Education Project, based on the idea of the "educational garden" in which students grow and learn through hands-on experience. The project is designed to provide students with a real-life learning experience where they can apply the concepts they learn in the classroom to real-world situations.
- The Partnership for Agricultural Education, which is a national initiative that aims to improve the quality of agricultural education in the United States. The partnership brings together educators, industry leaders, and government officials to work towards increasing student interest in agriculture.

The book's impact and influence are significant, as it has been cited in numerous academic articles and textbooks. It is a valuable resource for anyone interested in learning more about agricultural education and its role in preparing students for success in the agricultural industry.

THE AGRICULTURAL EDUCATION MAGAZINE

Members of the Editorial Board:
- Secretary, Robert W. Walker, University of California, Berkeley, from page 225
- Editors, Richard E. Elliott, Editor, James K. Peterson, Pacific Region; and Harbin L. Pearson, Business Manager.

243

THE AGRICULTURAL EDUCATION MAGAZINE

MARCH 1972

by one and all. In his own modest way, he quietly went about his duties in an atmosphere of cooperation and mutual respect, winning friends and influencing the lives of those about him. He ran a happy shop and I gleaned a great privilege to have been aboard.

People like him, it seems to me, are the greatest artists for they practice the highest of arts — the art of life itself.

In conclusion, I readily admit that there is little of value in this in terms of solving the current problems. However, I believe that these tributes to Leaders of the Past will not allow their memory to slip away into the abyss of oblivion.

We, in the present, may hope to be at once more humane, more generous in our sympathies and more sober in our judgments.
NEW MEMBER
EDITING-MANAGING BD.

James R. Peddicord, State Supervisor of Agricultural Education from Nevada, has been elected to the Editing-Managing Board of the Agricultural Education Magazine representing the Pacific Region for a four year term beginning January 1, 1972. He is a Kansas State University graduate, and his experience includes over ten years teaching experience including vocational agriculture, sales manager for a new car dealership, and Nevada State Department of Education.

He is married, with daughter Nancy who has completed a M.S. in Home Economics and son Neil who will soon complete his B.S. in Agricultural Education.

Jim has held several offices in the Nevada Vo-Ag Teacher Association, is presently on the National FFA Board of Directors, a member of Lions International, Chairman of his Church Board, and his hobbies are bridge, collecting barb wire, hunting and fishing.

NEW SPECIAL EDITOR
APPOINTED

Donald E. McCready, Assistant Professor of Agricultural Education at the University of Rhode Island, has been appointed a Special Editor from the North Atlantic Region.

Dr. McCready is a former teacher of vocational agriculture at West Manchester, Ohio. He received his B.S. in Animal Science from the Pennsylvania State University, his M.A. in Agricultural Education from Ohio State University, and his Ph.D. in Agricultural Education from the Pennsylvania State University. His major responsibilities in Rhode Island include undergraduate teaching in agricultural education and coordination of a master’s program in Youth and Adult Education.

Dr. McCready is presently the treasurer of the American Association of Teacher Educators in Agriculture, and a member of Phi Delta Kappa, Gamma Sigma Delta, Alpha Tau Alpha, and the American Vocational Association.

NEW PICTURE EDITOR
APPOINTED

Dr. Richard L. Douglas, Assistant Professor of Agricultural Education, University of Nebraska — Lincoln has accepted the position of Picture Editor of the Agricultural Education Magazine beginning with the March 1972 issue. He is a University of Nebraska graduate, has taught vocational agriculture in Sutton, Nebraska for four years, received his M.S. Degree in 1968, and completed the Ph.D. in Adult Education at UNL in August, 1971.

Dr. Douglass’s special interests include In-Service Teaching Techniques Program and Instructional Media. He is a member of Alpha Tau Alpha, Phi Delta Kappa, Gamma Sigma Delta, and of state and national vocational associations. His special interest in photography and use of visuals should enable him to contribute meaningfully as new picture editor.

HOWARD MARTIN
RETIRES

Professor W. Howard Martin was born 1910 in Vermont, educated in her schools and graduated with honors from her state university. He served as a secondary school teacher, coach, and assistant principal before joining the faculty of the University of Vermont as an assistant professor. His Masters from Cornell University and his Doctorate from the University of Illinois did not complete his education, he is still a practicing scholar. Joining the University in 1946 as Associate Professor of Agricultural Education, he has had a distinguished career — Editor of Agriculture Education Magazine, Consultant to the Government of Northern Rhodesia, Editor of the Connecticut Teacher Education Quarterly, Director of an Education Professional Development Act Project. He provided strong leadership in the development of the Regional Vocational Agriculture Centers in Connecticut. He will be remembered by his colleagues as he retires for his penetrating analysis of educational problems, his helping hand, and his incisive wit. Howard enjoys his retirement in the beautiful Vermont hills.

The educational emphasis of the tour will be on visiting local vocational and technical education facilities in each of the cities visited. In addition, city tours and free time for independent adventures will be provided.

Tour participants may, if they desire, earn five quarter hours of undergraduate or graduate credit through the summer program of The University of Akron. Those who are employed in the field of occupational education as vocational or technical teachers, counselors, industrial arts teachers, administrators, etc., may be able to have a major portion of the cost of the tour as an income tax deduction. All educators are welcome to participate.

For further information on this 21-day escorted tour, please write to Dr. Bill J. Frye, College of Education, The University of Akron, Akron, Ohio 44304.