Stories in Pictures
by Richard Douglass

Shown above is part of the group of Vocate-Ag teachers in Region V NVATA who attended the leadership training school held in Athens, Georgia. This photo was taken at Engineering Center of the (AIVVM) American Association for Vocational Instructional Materials after the leaders of Alabama, Georgia, Florida, Mississippi, North Carolina, South Carolina and Tennessee had learned how their teaching materials are assembled. (Photo courtesy of D.P. Whitten, Region V Vice-President)

1971-72 NVATA EXECUTIVE COMMITTEE (Back Row - Left to Right - Vice Presidents) Luther Latimer, Region I — Kilgore, Texas; Bill Harrison, Region II — Lebanon, Oklahoma; Francis Murphy, Region III — Madison, South Dakota; Odis Miller, Region IV — Raymond, Ohio; D.P. Whitten, Region V — Greenville, North Carolina; James Shadde, Region VI — Region President; (Front Row — Left to Right) Sam Smith, Treasurer, Coffey, Kansas; Gus McDaniel, First President, Pikesville, Kentucky; Howard Todd, President, Greenville, New York; James Woll, Executive Secretary, Lincoln, Nebraska. (Photo by Peter Carroll, Portland, Oregon)

August 1972

Agricultural Education
Volume 45
Number 2

WHO DO YOU INVOLVE IN EVALUATING AND UPDATING YOUR PROGRAM?

Theme — EVALUATION
TABLE OF CONTENTS

THEME — EVALUATION

Editorials

Do You Need To: Tighten Up Your Evaluation Procedures Roy D. Dillon 27

Tighten For Future Insect Harold R. Mattern 28

Evaluation: A Step Toward Developing A Successful Vocational Agriculture Department Jay McCracken 29

A New Idea For Basic Education Programs and In Agriculture Don Prich 30

Improving Teaching Methods Through Research Hollie Thomas 32

Evaluation: A New Look At Crops Frank Wilson 34

Index to Volume 44 .. 35

Foundations of the Vocational Agriculture Student in the Farm Mechanic Program Don Achorn 35

A Way To Evaluate Young Farmer Classes David Rothwell 36

So You’re A Cooperating Teacher Gary Kuhn 41

Book Review .. 41

A Layman and School Administrator View Evaluation of Vocational Agriculture Programs John Ballew and Clinton Hill 44

Agricultural Education for the 21st Century Thomas H. Stitt 44

Let’s Communicate With the Slow Learner N. K. Quasey 46

News of the Profession 47

Studies In Pictures .. 48

MANAGING EDITORS

ROY D. DILLON, Editor, University of Nebraska, Lincoln 68808

ERNEST L. STUBER, Business Manager, The Agricultural Education Magazine, no. 4253, Columbus, Ohio 43210

J. ROBERT WARMERDOR, Consulting Editor, The Ohio State University, Columbus, Ohio 43210

SPECIAL EDITORS

NORTH ATLANTIC REGION

DONALD E. MCCORMICK, University of Rhode Island, Kingston, R.I. 02881

SAMUEL A. CURTIS, The Pennsylvania State University, University Park, Pa. 16802

CENTRAL REGION

MARCUS R. MILLUN, University of Minnesota, St. Paul, Minn. 55101

ROBERT W. STEWART, University of Wisconsin, Madison, Wis. 53706

SOUTHERN REGION

JAMES A. ATTERTON, Louisiana State University, Baton Rouge, La. 70803

WILLIAM T. ELLIS, North Carolina A & T State University, Greensboro, N.C. 27401

EARL D. WEBB, Texas A & M University, College Station, Tex. 77843

PACIFIC REGION

RUDOLPH ENGELHARDT, University of California, Davis, Calif. 95616

DIETRICH KUNDIGEFF, University of Idaho, Moscow, Idaho 83843

FLOYD G. ROMMICK, The University of Arizona, Tucson, Arizona 85721

BOOK REVIEW

JAMES P. KENDRICK, Ohio State University, Stillwater, Okla. 74074

PICTORIAL

RICHARD B. DOUGLASS, University of Nebraska, Lincoln, Neb. 68503

NARIA

JAMES WALL, Box 4400, Lincoln, Nebraska 65004

REPORT FROM THE

J. DAVID MCCORMICK, The Ohio State University, Columbus, Ohio 43210

INTERNATIONAL EDUCATION

R. V. DAY, University of Nebraska, Lincoln, Neb. 68503

HISTORICAL

G. O. LOESEN, Washington State University, Pullman, Wash. 99163

EDITORS-MANAGING BOARD

GEORGE W. WIEGERS, JR., University of Tennessee, Knoxville, Tennessee 37916

ROBERT WARMERDOR, The Ohio State University, Columbus, Ohio 43210

MARTIN L. MITCHELL, New Hampshire State Department of Education, Concord, New Hampshire 03301

JAMES R. PEDDERDING, Nebraska State Department of Education, Lincoln, Nebraska 68503

ERAS BRIDY, Oklahoma State University, Stillwater, Oklahoma 74074

DONALD E. MCCORMICK, University of Oregon, Corvallis, Oregon 97330

EVA M. BENNETT, Georgia State University, Atlanta, Georgia 30303

FORMAL EVALUATION

Evaluation is one of the "four” words today. This is as it should be. Much effort has been expanded in establishing the need for evaluation and in developing testing and improving systems of evaluation. Many helpful documents and articles concerning evaluation have been written and disseminated. Most of this important and timely work has been directed toward formal, planned and designed systems of methods or evaluation.

FORMAL EVALUATION

FORMAL EVALUATION

TIGHTEN UP YOUR EVALUATION PROCEDURES?

When school begins and classes get underway, daily lesson plans are planned and conducted, activities are added and completed, and the everyday pace of the program is maintained by the teacher quickly. This teacher has many daily reactions to events in the classroom, laboratory, in job instruction, and at supporting activities. The school administration, other teachers, and students develop opinions of the vocational teacher and of his program as they see and hear of the educational and supportive activities being conducted.

Decisions which directly affect the local vocational programs are made throughout the year. For example:

1. Will the teacher be retained?
2. Will students enroll in course?
3. Which courses will be offered?
4. Should special instructional and extra-curricular activities be authorized?
5. Should budget requests be approved?
6. Should I join the FFA?

Three and administrative decisions are made by school policy makers and program participants. These judgments are based on the individual and collective opinion of the person(s) making the judgment. Opinions are being formed anywhere; let’s structure the opinions toward the true picture of our program.

The vocational teacher deserves a fair evaluation of his program that he may make improvements as needed. His effectiveness in conducting a vocational education program in a local community will improve the longer he is in the system and can influence program participants.

My challenge in the introduction to this issue, which includes several excellent articles on evaluation, is for the vocational teacher. You are on the "inside looking out" of the local program and is in the best position to provide leadership in structuring the gathering, summarization, and interpretation of information used to make evaluative judgments. The best that you can do is to provide truthful and accurate information to the local educational policy makers.

If local people are judging you and your program by a "hit and miss” technique, you should plan ways of obtaining data and feedback as you go along. It is much more accurate to accumulate information in several forms throughout a year than to "try to remember” or accept someone else’s recollection months later.

Look at the articles this month to obtain ideas on "What Can I Do To Tighten Up My Program Evaluation?"
Informal evaluations can become very useful to the teacher only if he is first aware that such assessment is continuous, is made by many people, and is operating whether or not the teacher is aware of the process.

(Proceed from page 22)

Evaluation should be accomplished on three levels; (1) continuously throughout the year, (2) annually at the local level, and (3) a three year comprehensive evaluation.

The third level of evaluation, called a comprehensive evaluation in Colorado, should be conducted periodically at approximately three-year intervals. This is a complete vocational agriculture program evaluation that utilizes personnel from the office of the state supervisor, the state land grant colleges or universities, a competent vocational agriculture teacher from another school, the school administration and vocational agriculture advisory council, and other qualified lay persons. A comprehensive evaluation will require at least one day. The evaluation committee should obtain objective evidence of the accomplishment of certain criteria for evaluation. A format followed in Colorado is called, "An Instrument for Evaluating Departments of Vocational Agriculture" developed by the State Board for Community Colleges and Occupational Education and the Department of Vocational Education at Colorado State University. Most departments should have such an evaluation procedure available to vocational agriculture departments in their state.

As the primary purpose of evaluation is to identify strong and weak points as bas for planning and upgrading the local vocational agriculture program, it is important that the evaluation be conducted by the local school district. Prior to the arrival of the evaluation committee, the local instructor or instructor should review the evaluation materials and collect whatever supporting evidence of accomplishment as needed. It should be understood that department evaluation should not be used as a basis for hiring, demoting, or dismissing salary. Everyone involved must approach evaluation with a positive attitude and with the purpose to help upgrade the local programs.

California's evaluating instrument includes eight sections. These sections are outlined below. Perhaps if you do not have access to such an evaluation instrument, this will list the different items you may want to consider.

SECTION I: THE PROGRAM
A. Determination of Community Needs
B. Occupational Program
C. Student Selection and Guidance
D. Planning and Programming
E. Student Placement
F. Establishment in Agriculture and Follow-up Activities
G. Progress Reports and Records
H. Advisory Council
I. Coordination of the Department and its Program

SECTION II: ADMINISTRATION
A. Department Policy
B. Department Budget
C. Records, Reports and Inventories
D. Salary and Travel
E. Utilization of Resources

SECTION III: FACILITIES AND EQUIPMENT
A. Classroom and Office
B. Agricultural Mechanic Shop
C. School Land Laboratory and for Calculation of participatory, administrative, and physical facilities.

SECTION IV: CURRICULUM AND PROGRAM OF INSTRUCTION
A. Organization and Content of Instruction
B. Teaching Methods and Procedures
C. Evaluation of Program
D. Handling of Student Discipline

SECTION V: SUPERVISED OCCUPATIONAL EXPERIENCE PROGRAMS
A. Administration of the Supervised Occupation Program
B. Description of Students' Supervised Occupation Programs
C. Evaluation of Student Indicators to be Used; Production Indicators to be Used: Non-Production Indicators

(Concluded on page 50)
A PROCESS FOR EVALUATING VOCATIONAL EDUCATION PROGRAMS IN AGRICULTURE

Harold R. Matteson
Department of Agricultural and Extension Education
University of Wisconsin

During the present era of accountability, vocational educational instructors in agriculture at the secondary and post-secondary school levels are facing an ever-increasing need to develop a systematic approach to the evaluation of their programs. This need has been partially alleviated by the use of "process" which an instructor might use in evaluating his vocational educational program and to answer some questions which the instructor needs to answer as he moves through this process.

Before entering this discussion, however, the writer feels it necessary to define a "process" and the definition of "evaluation" which will provide the subsequent discussion of this topic.

Evaluation will be viewed as a systematic process of judging the worth, desirability, effectiveness, or adequacy of something according to definite criteria and purposes. The judgment is based upon a careful comparison of observation data with standards.

It is important to note that the three major elements of his definition are evidence, criteria, and judgment which are essential for most types of evaluations.

Evaluation Model or Process

1. Purpose of Evaluation

Why am I conducting an evaluation? Am I trying to determine if I have reached my program objectives; or am I hoping to prove the value and importance of my program to my administrative superiors, or to my community? These are just some of the questions a vocational educational instructor must answer as he attempts to determine the reasons for conducting an evaluation. The importance of this step should not be taken lightly for it directly influences the subsequent steps in the evaluation process.

2. Program Characteristics to be Evaluated

Program characteristics which might be evaluated are efficiency, effectiveness, and importance. How well did my program or component of my program achieve its objectives is the question an evaluator must answer when evaluating the effectiveness of a program. This would involve a comparison of program output with criteria for program success. How expensive (input) was it to acquire a given set of results (output)? This is the question which must be answered when evaluating the efficiency of a program. When a given program is compared to a standard (criteria) or another program, what adjustments to the inputs must be made is evaluated.

Currently, the present vocational agriculture program offering the most appropriate program in a particular community is a given teaching method the most suitable method of comparing a given group of students? These are some of the questions one must answer when evaluating the effectiveness of a program or program component.

3. Program Level or Component to be Evaluated

Will the entire program be evaluated or just one aspect of the program? For example, do you wish to evaluate your FFA program, your occupational experience program, or possibly an in-class method of instruction? This decision must be made before evidence can be collected or criteria established.

4. Program Stage to be Evaluated

Some of the program stages identified in the literature are program determination, program preparation, program implementation, or program evaluation. Which one(s) of these will you be including in your evaluation?

5. Criteria Selection

A criteria is a measure against which something can be judged. It may be a rule, a standard, a norm, an object, a condition or behavior which is considered "good" or "ideal." It is a description or image of what a valuable, suitable, high quality, effective, important, and/or efficient program should look like.

The criteria an evaluator needs to develop will depend directly on the type of decisions he has made regarding the first four steps in this process. For example, if a vocational agricultural instructor decides to determine how effectively he has achieved his program objectives, he would need to establish criteria regarding program output. Generally, program output for educational programs is behavioral changes which have taken place in students as a result of their participation in an educational program. If a vocational agriculture program is considered to be a clear set of program and unit objectives, he probably has already developed an adequate set of criteria for this type of evaluation. If program objectives have not been developed and/or do not include adequate criteria, then a clear set of criteria must be developed before moving forward to the next step in the evaluation process.

6. Collecting Evidence for Evaluation

In order to evaluate a vocational agriculture program or component, one must collect data which will be used to determine the decisions he has made previously in this process. Four additional questions which must be answered before he begins to collect information for evaluation. These are:

a. What will be the source of evidence for evaluation?

Some of the sources of evidence that are available in most rural communities are students presently enrolled in the program, graduates of the program, employers, parents, advisory committees, guidance counselors, State FFA officers, other vocational automotive instructors, and other key members of the community. The appropriateness of each of these sources of evidence will depend on the purpose of your evaluation, the program characteristic(s), component and/or program stage you intend to evaluate, and the average age of the students you are assessing, and the amount of time you have available for evaluation.

b. What evidence, collecting methods, or instruments should be employed? Quizzes, examinations, student total and written reports, term papers, performance tests, check lists, questionnaires, observation, and personal interviews are examples of methods or instruments which can be used to collect evidence for evaluation.

c. When should evidence be collected — at the end of a lesson, a unit, a course, a program, or maybe years later? Generally, this decision must be made before evidence can be collected or criteria established.

7. Analyzing and Interpreting Evaluation Data

The data and interpretation include three major functions or operations:

a. Organizing and classifying evaluation data. Since evaluation data are usually collected in a variety of forms and from many sources and by more than one instrument or method, it is often difficult, if not impossible, to devise a classification system which would include all of these data. Generally, this problem can be avoided if the instructor in charge of the evaluation program develops a means of classifying data before they are collected; and consequently, influence the design of the instruments and/or methods used for collecting these data.

b. Comparing evaluation data or evidence with criteria determined previously in this process. As previously stated, criteria are standards; therefore, you are at the stage in the evaluation process where you are trying to determine if your program has reached the goals or standards you developed by implementing the program.

c. Making judgments regarding how effective, satisfactory, or efficient a program or program component really was and why.

8. Reporting and Using Evaluation Information

Some of the factors an instructor should consider as he prepares an evaluation report are:

a. Clearly identify the audience. A report which might be suitable for guidance counselors, administrators, teachers, and other professional staff would generally not be satisfactory for parents, farmers, and vocational employees. The type and language in which the data are presented will have to be adjusted depending on the audience.

b. Determine how the report will be used. If a report is mainly used in group discussion, it could be more brief and simple. A report which is being prepared for general distribution without any planned meeting to discuss it.

c. Develop a simple and effective report format. An example of such a format might be: (1) Purpose of evaluation, (2) What was evaluated, (3) How was the evaluation conducted, (4) Major findings of the study, (5) Conclusions, implications, recommendations. To what extent each of these should be discussed in a given report will depend largely on the audience and the intended use of the report.

Concluding Remarks

Because many vocational agricultural instructors view evaluation as a very complex process, they have failed to evaluate their programs or have evaluated them in a very superficial manner. Teachers, educators, and other individuals responsible for pre-service and in-service training programs of this type have probably contributed to this problem by not providing enough adequate and/or appropriate instruction for the vocational agricultural instructors regarding the "process of evaluation." Many instructors have been taught "evaluation theories" but fail to assist the students in operationalizing these theories into practice.

The writer suggests that an attempt to bridge some of the gap between theory and practice by presenting and discussing a step-by-step process which a vocational agricultural instructor can use with appropriate data for evaluating his vocational agricultural program. ☑ ☑ ☑

Improving Teaching Methods Through Student Evaluation

Hollis Thomas
Agricultural Education Division
University of Illinois

The teacher of agriculture does many things other than teach in the classroom. Field trips, short activities, FFA work, supervision of experiment programs, supervision of placement experience, and various other activities put an enormous amount of the teacher's time. These activities outside of the classroom are very important aspects of the total program. It might be assumed that the teacher who is able to perform the activities outside of the classroom well need not be able to teach with any degree of excellence. This assumption, however, is not supported by observations of the total program. A teacher has a good program regardless of whether he has a good job of teaching in the classroom. Perhaps this is due to the selection process that occurs during the teacher's early years as a teacher. A teacher of agriculture must do an adequate job of teaching in the classroom if he is to stay in the school system long enough to develop his reputation as being an outstanding FFA advisor or adult instructor. The opportunity to stay in the community is not the only reason for doing an excellent job of teaching. Students enroll in classes in agriculture with the expectation of learning something about agriculture. In addition, the number of students who enroll will decrease if the teacher does a poor job of teaching. It is the teacher's responsibility to do a respectable job of teaching and make efforts to improve his instructional procedures both for the benefit of the students as well as his own satisfaction.

How can teaching be improved?

Teaching can be improved by a variety of means, e.g., in-service workshops, self-directed study, experience, and feedback information from observers. An important prerequisite to the improvement of teaching is an favorable attitude toward improving one's teaching. If the teacher does not bring with him an open mind regarding his teaching expertise, little improvement can be expected, regardless of the stimuli supplied.

This article is concerned primarily with the improvement of teaching methods through systematic feedback of student evaluations to the teacher. Research on improving the reliability and validity of student ratings and the effect of feedback of student ratings on teaching behavior are sought. In this article we attempt to obtain student feedback regarding the teacher's performance of the problem-solving approach along with procedures for administering and scoring of the evaluation forms.

Are student ratings valid?

The question of validity relates to whether or not the responses of students on an instrument that purports to measure aspects of teaching performance really does measure these aspects. In other words, if a scale on an instrument is supposed to yield a score that reflects the teacher's performance in developing objectives with the students for the unit or problem area to be studied, does the score obtained reflect the actual performance? Some of our students tend to make such an evaluation by comparing the unit with what they think the perfect unit ought to be. In other words, as long as they get all good or all bad, depending on their feelings about the teacher, student ratings appear to be a good measure of the actual performance of the teacher. Student ratings are made on a particular day and a particular period during which the teacher may have had an exceptionally good or exceptionally bad day. In addition, students may be on their best or worst behavior when someone is visiting the class.

Are student ratings reliable?

The reliability of an instrument refers to the reproducibility of similar results on (1) another form of the instrument (equivalence), (2) the same test at a later date (stability), or (3) one-half of the items on an instrument or scale as related to the other half (consistency). The degree to which an instrument is reliable is measured by a correlation coefficient.

Student ratings have been shown to be highly reliable by these means of establishing reliability. Thomas (1969) found student ratings to be very reliable on an instrument containing six different scales; the scales were both highly consistent and very stable.

The effect of feedback of student evaluations on teaching behavior

If improvements are to be made, the result of feedback of student evaluations of the teaching performance, the teacher must be willing to accept student ratings as reflecting his teaching and be willing to make adjustments in his teaching practices. In addition, there must be room to improve. This is to say the ratings he receives from the students must be less than the best possible. If a teacher receives the best possible ratings from his students, these ratings amount to a pat on the back rather than a source of information that can be used to assist the teacher in improving his teaching performance. Most teachers, however, do not receive the best possible ratings from their students and thus may find such ratings beneficial in identifying areas in which improvements may be made.

Using student evaluations to improve teaching performance

Some important factors to consider when feedback of student opinions is to be used as the change (Continued on next page)
Vocational agriculture educators, in the primary purpose of vocational agriculture education is to provide programs, services and activities to assist persons to become employed or self-employed in these fields, the programs should provide for the development of competence in the market place skills, and the first level of evaluation shall measure accomplishment of the goal of employment.

There are many aspects of agricultural education which can be evaluated: teacher effectiveness, facilities and equipment, curriculum content, etc. While each of these is a contributor to the accomplishment of the primary goal of employment, they are not measures of the "end result" expected to be achieved, that of employment.

We may evaluate by comparing various "process" components (teacher effectiveness, students, etc.) with agreed-upon standards, make an analysis, and conclude that the program is "good." And yet, it may be "good" at doing the wrong thing.

The first phase (level) of evaluation should determine to what extent the primary objective is being met; that is, how many of a group of entering enrollees are employed at the end of the normal training time. It is not enough for a high percentage of graduates to become employed. The rate of employment of all those who were enrolled is significant. A system which "weeds out" during the process to assure a "high quality" of a reduced output is not efficient.

Evolution is concerned with the "what happened," a concept which attempts to collect useful information for the purposes of making sound decisions about programs and the program output relative to "meeting manpower needs." To determine "why" requires a further look at the process components (teachers, facilities, curriculum, etc.). Remember also that forecasting is an integral part of any system involved with evaluation.

Many of the present forecast and evaluation systems make what I believe to be false assumptions when comparing "output" and "demand." The first assumption is that it is possible to measure the output of all the various training systems. The second assumption is that "output" from training has an impact on the "demand." Not only is my knowledge of the knowledge that has been absorbed to measure the total "output," but unless the "output" is employed in the market place, it has been no impact on the demand.

In view of this and in order to structure some meaning into forecasting and evaluation, let me begin with a basic assumption: in a comprehensive school program, the skills taught should be a mirror reflect or the kinds of skills required or which will be required in the future. This new emphasis is accompanied by an increased utilization of measures of accomplishments in educational planning and in the allocation of resources.

Robert Nourse, Research and Development Specialist, The Center for Vocational and Technical Education, Ohio State University, makes a distinct difference between the terms evaluation and accountability:

While evaluation focuses on providing useful information for the purpose of making more rational decisions, accountability focuses on documentation of what happened and why. What decisions were made and why they were made?

This article will deal with evaluation, emphasizing the means and purposes of the terms of serving the needs which the program is designed to meet.

Since the primary purpose of vocational education is to provide programs, services and activities to assist persons to become employed or self-employed in these fields, then the program should provide for the development of competence in the market place skills, and the first level of evaluation shall measure accomplishment of the goal of employment.

There are many aspects of agricultural education which can be evaluated: teacher effectiveness, facilities and equipment, curriculum content, etc. While each of these is a contributor to the appraisal of the program's success, they are not measures of the "end result" expected to be achieved, that of employment.
EVALUATION OF THE VOCATIONAL AGRICULTURE STUDENT IN THE FARM MECHANICS PROGRAM

Dan Acheson
Vo-Ag Instructor
Kimball County High School
Kimball, Nebraska

One of the most important portions of the Vocational Agriculture program is the farm mechanics area. The quality of the evaluation lies in what should be evaluated and how it should be evaluated. Grading or evaluating farm mechanics students differs from the instructor who care-
fully grades each weld, each nail, and each detail.

There is probably no basic way that is best as an evaluation of students in farm mechanics; however, at Kimball County High School we find a grade each day provides the best overall pic-
ture of a student's progress in the subject.

Breaking the general grading into class areas the following is the system used at Kimball County High School.

The freshman or Ag I level is an introduction or orientation level. All level students are re-
quired to make a major project in each of the following areas: welding, oxy-acetylene welding, farm
carpentry, hand tool use, and tool sharpening. Each student is allowed to move at his own pace to the
first step in each area, and is then graded on his progress from that point. An example of this would be a student learning welding could receive 10's for each day he kept busy and progressed on to the flat weld; however, after being passed on the flat weld, he would only have three days to complete the fillet weld before his grades were docked at the rate of one point per day. After the students in Vo-Ag I have completed all areas in all of the above listed areas, they are then allowed to start on their first projects; these projects may be either wood, metal, or a combination.

A combination is an area where each student must progress and make a certain amount; and, therefore, the Vo-Ag II students are given a quick review of the skills which were learned at the Vo-Ag I level. This review is covered rapidly, although thoroughly; and again, students are graded on how they keep and on their progress. After the basic review, Vo-Ag II students will be introduced to the small gasoline engine and will have class and shop experience in this area. Also, hands on will be covered and evaluation is handled in the same way.

The next step of the farm mechanics program for Vo-Ag II is that of larger, more complex projects. Students are given time and instructions to get a project for the farm mechanics shop. These students trying to do this are docked on their grades daily and are assigned specific projects by the in-
suctor. At this Vo-Ag II level the students are graded on: 1) whether they have a project, 2) if they stay busy for the full time period, 3) the progress on their projects, and 4) the finished project. Students are docked daily for any work not suitable for high school students, any "horse play," and any errors on their projects due to

Trailers built by Agr. III students

Several sets of stock racks were built by the Agr. III IV students, with profits to the FFA Chapter.

To students in farm mechanics is that of Vo-Ag III-IV. This Vo-Ag class, while perhaps not typical, is a combination of the two levels. The main emphasis is aimed towards certain projects such as stock trailers, stock racks, feed wagons and also various projects for the shop system. The students at this level also become fairly competent at hard laboring. The evaluation here is again a daily grade and based much as previously mentioned. The students either build a large proj-
et of their own or are assigned one in which a project for some local farmer is built and sold with the profits going to the FFA Chapter. The evaluation at this level is more technical, and the students are nearly ready to go into the working world. The students are evaluated very strongly on accuracy, work habits, and maturity attitude.

The program of farm mechanics at Kimball County High School is basically divided. Our program is found in the vocational agriculture program. Our program is found in the vocational agriculture program.
A WAY TO EVALUATE YOUNG FARMER CLASSES

David Bethwell
Vocational Agriculture Instructor
Manitou, Kansas

The author believes that a satisfactory bulletin on the evaluation of student work in the vocational agriculture classes is at present non-existent. The problem has been a difficult one, but one that must be solved if the class is to achieve the maximum in the development of the student. The bulletin contains a number of criteria which can be used for evaluating the classes. The criteria are very specific and can be applied to any class. The bulletin is a valuable resource for those who are interested in evaluating the classes.
When asked to write this article about evaluating our Vocational Ag program, I wondered if I could really do a good job, but I agreed to put down my thoughts as a "name wot isn't an outsider. Even though I am a farmer, I did not take Ag. in school, I attended a very large city high school where Ag. was not offered. My knowledge of our Ag. program has been as a substitute teacher and an advisory council member.

Our program like so many others has a big problem with adequate financial funding and ways to keep the program as modern and able to change with agriculture. One of the biggest assets of our program is that we have several boys who are able to carry on rather good experience programs even though they do not live on farms. They are able to do this by using the FFA farm and participating in our Ag. Business. I believe a significant expansion for openings in Ag-business we should to try to include more of these boys who would want to work in Ag. and help them gain a better background.

As a farmer learning about better bookkeeping methods the tenant expanded and proper use of credit in today's business world, I feel that a farm is the one who learns what it takes to put on record keeping - actual keeping track of where the money goes for a project and whether it made a profit for labor and management, and not just whether there was a profit after the work was done. They found that students go into tax forms and other record keeping programs. It is one of the most valuable courses I took in college was a Farm Accounting course.

NO LONGER CAN THE CURRICULUM FORMAT BE GEARED SPECIFICALLY FOR BOYS WHO EXPECT TO FARM AS A Vocation.

One of the biggest problems I believe in our program or any other general type program is its generality. I think that every teacher must be careful to see that a course of this kind can become specialized in the field or fields that the teacher enjoys most or finds easiest to teach. I think it is easier for the teacher, through a broad program approach, to arouse the interests in a boy and help him pursue them, be well meet most reacond.

A problem in our school as I suppose is in other's, are those boys who are registered in Ag. class and are not attentive in class. It is hard that these are the ones that distract the class for everyone. I think that in a vocational class it should not be so important how many people are in the classroom but the level of achievement of those in the program.

I think one of the most rewarding parts of the program for the students must be some of the extra activities that they feel so important. It seems to me that camps, speeches, judging corns and conventions must be kept in the program as some of these are so important in helping a student grow up and become a complete person. This is where the boys fine trip outside their own community. It may seem that I have ranched a bit, but I believe there are a few of the things that are best in our program and a few that could be improved upon.

A LAYMAN AND SCHOOL ADMINISTRATOR VIEW EVALUATION OF VOCATIONAL AGRICULTURE PROGRAMS

Clintons Hill
Principals, USD 396 High School
Peabody, Kansas

As an administrator of a small high school, my view and evaluation of vocational agriculture in our high schools of today has changed in the past six years. By becoming principal of a high school, I was a teacher in the classroom for fifteen years. After being a student in high school and college and then as a teacher, I had developed the opinion that vocational agriculture in high schools would go out of existence as the number of farmers were decreasing and the number of farm students in vocational agriculture would probably decrease, which would make it financially unwise for schools to continue the program. As a social science teacher and an athletic coach, it was my opinion that vocational agriculture was just for farm boys who wanted to become farmers.

Since becoming a principal in a high school which has vocational agriculture in its curriculum, I have to view the value of this course differently than I did six years ago. I am convinced that a vocational agriculture course in high school still has a definite value if the philosophy and objectives of the teacher has kept up with the change in society. No longer can the curriculum format be geared specifically for boys who expect to farm as a vocation. If this is the situation, then the course cannot be justified financially.

If the instructor of vocational agriculture has set up his curriculum to include vocational agriculture, this course should be the boys fine trip outside of their own community. It may seem that I have ranched a bit, but I believe there are a few of the things that are best in our program and a few that could be improved upon.

(August Hill — Continued from page 42)

specialized. Consequently, the teacher of vocational agriculture has a task of providing a wide range of information and knowledge to any student who might have an interest in some area of agriculture.

Hunger, which is our greatest threat to peace and national security, is a primary problem. Hunger means that the birthrate is increasing and that the food produced is not being saved. This results in a tremendous task that will require a great deal of the nation's agricultural community.

The communities, school boards and administration need to be aware of this change and demands in the agricultural world because new and different facilities are necessary if the same old program is to be able to continue the program that is necessary and one that will be effective.

Like vocational agriculture teachers and the administration, the school boards and communities need to realize that vocational agriculture is no longer enough just for the farm boy who wants to become a farmer. The vocational agriculture program should be made available to both boys and girls and for the students from the city as well as the rural areas. It is just as likely that a student living in town could develop an interest in an agriculture-related vocation as a student who lives on a farm. This is why the instructor has designed his program so that it is attractive to girls as well as boys and to city students as well as farm students.

改进教学方法

Improving teaching methods through student evaluation — from page 33

16. Ask additional questions to get more information.
25. Show us why we do not know everything.
V. Autocratic Behavior
2. Get me mail when we do not do our assignments correctly.
3. This is our only point of view.
19. Does not recognize that there are different ways to look at things.
20. Makes the student ask questions another way you do it.
21. Withholds the decision to dismiss sides of an issue.
22. Tries to answer questions rather than ask the questions in a different way.

VI. Motivational Behavior
11. Tries to get us to look at things in different ways.
15. Encourages us to ask questions.
17. Threatens us when we do not do our homework.
23. Makes us feel good about ourselves.

VII. Acceptance Behavior
38. Changes the classroom activities during the lesson.
45. Encourages us to ask questions.
46. Encourages the student to show us that we do not know everything.
50. Responds to our ideas when we have thought about answers that have come from him.
52. Shows approval of good work.
54. Changes the classroom activities during the lesson.

The teaching behavior measured by responses to the items on the various scales are somewhat different by reading the items on each of the questionnaires here will be determine the way in which each scale relates to problem solving. These explanations are:

I. Establishing set — This scale relates to the process of introducing a unit and problem area (lesser) including the establishment of goals and objectives. This scale measures the reinforcement of the learner as the basis for problem-solving teaching, especially these aspects that deal with recall and summarization at the end of the lesson area.

II. Recognition of behavior — This scale measures the awareness the teacher has of the mental and physical states of his students. While not directly related to problem solving, the recognition of the student's behavior and the subsequent correction of this behavior is important in any approach to teaching.

IV. Questioning technique — If the problem-solving approach to teaching is to work effectively, the teacher must develop his questioning abilities. Hence, this scale was developed to measure the degree to which the teacher has mastered these techniques.

V. Autocratic behavior — The democratic approach is stressed in the problem-solving approach to teaching. This scale measures the degree to which the teacher accepts the thoughts and ideas of the students. An element of flexibility is also suggested.

VI. Motivational behavior — The primary advantage of the problem-solving approach to the factor of motivation. Hence this scale was designed to measure aspects of the teacher's ability to motivate the student.

VII. Acceptance behavior — This scale measures the degree to which the teacher accepts the thoughts and ideas of the students. An element of flexibility is also suggested.

Covering the instrument that describes the instrument is accomplished by summing the responses on each scale. The response words are normally assigned the following values: very true = 5, somewhat true = 4, neither true nor false = 3, somewhat false = 1 and very untrue = 1. A high score indicates that the student feels that the items included on the scales do in fact describe the teacher's behavior. The scale should be revised for a single item, method No. 17, before summing. The response scale for all items on the Acceptance Behavior Scale may be reversed before summing if the teacher wishes to obtain a score that represents democratic behavior.

Conclusions

The improvement of tea's teaching skills is not an easy task. Many techniques can and should be employed by the teacher in his attempts to become a superior teacher. The use of student evaluation and self-assessment feedback outlined in this article is one of these techniques. If the proper attitude is possessed by the teacher, the use of student evaluation and self-assessment feedback can be a valuable method of improving the teaching process.
Nepal “Nepal, a predominantly mountainous rectangle, 90 to 150 miles wide (North to South) and 500 miles long, has a total area slightly over 56,000 square miles.” This is approximately the same area as the state of Illinois. “Nepal is landlocked and has three neighbors — India to the south, China (mainly Tibet) — control most of the land to the North, and Sikkim to the east.” All exported and imported items must now travel through Tibet or India or by air. The nearest seaport is Calcutta, India which is approximately 1,000 miles west of Nepal.

The last demographic data available reports 9.7 million people in 1961 with an annual growth rate of 2 percent. This would bring the current population to over 12 million people. Of this number it was reported there were over ¾ million urban dwellers which represents less than 9% of the total population. The remainder of the population was located in approximately 8,000 villages with an estimated average population of 335 inhabitants per village.

Hinduism is the predominant religion with approximately two-thirds of the population following this belief, and Buddhism ranks second. The country is ruled by a monarchy system headed by King Mahendra with the aid of the National Planning System which was established by the King. The capital is Kathmandu, which is one of the oldest and largest cities in the country.

Agriculture in Nepal “Nepal presents a wide range of physical diversity than probably any other country of comparable size.” On the northern border are the Himalayan mountain range with six peaks in excess of 26,000 feet. To the South, no more than 100 miles from the barren icy heights, the cultivated fields and steaming jungles of the northern rim of the Gangetic Plain are less than 500 feet above sea level.” The annual rainfall is between 100 inches in the east to 40 inches in the west. The major portion of the rainfall comes during the monsoon season about 90 days in length, with the remainder of the year being mostly without rainfall. The concentrated rainfall and extreme drop in elevation combined with erosive soil types causes extreme problems of erosion. In the taluks, a fertile farm belt ranging from 5 to 55 miles wide running along the southern edge of the country, there are climatic conditions which allow for year round cropping assuming that sufficient irrigation can be provided.

The soil type and vegetation fluctuate to the extremes in a short distance due to the rapid change in elevation. Reports on land use estimates indicate that “one-third of the land lies under perpetual snow or alpine meadows... less than one-third is covered by forest and two-thirds is arable land under cultivation, and reclaimable wasteland is limited.” This would indicate that there is, compared to the total land mass, a relatively limited supply of land available for production agriculture. The demands for cultivable land are extensive as it is estimated that from 65 to 93 percent of the economically active population is engaged in farming as farmers. There is, as would be expected in a developing country, considerable manual labor involved in the present production system. The animal population is estimated to be “seven millions, of which 30 percent are cows and bulls, 25 percent oxen, 17 percent buffaloes, 25 percent sheep and goats, and 2 percent horses.”

The cattle are concentrated in the cultivated fields and steaming jungles of the northern rim of the Gangetic Plain are less than 500 feet above sea level.” The annual rainfall is between 100 inches in the east to 40 inches in the west. The major portion of the rainfall comes during the monsoon season about 90 days in length, with the remainder of the year being mostly without rainfall. The concentrated rainfall and extreme drop in elevation combined with erosive soil types causes extreme problems of erosion. In the taluks, a fertile farm belt ranging from 5 to 55 miles wide running along the southern edge of the country, there are climatic conditions which allow for year round cropping assuming that sufficient irrigation can be provided.

The soil type and vegetation fluctuate to the extremes in a short distance due to the rapid change in elevation. Reports on land use estimates indicate that “one-third of the land lies under perpetual snow or alpine meadows... less than one-third is covered by forest and two-thirds is arable land under cultivation, and reclaimable wasteland is limited.” This would indicate that there is, compared to the total land mass, a relatively limited supply of land available for production agriculture. The demands for cultivable land are extensive as it is estimated that from 65 to 93 percent of the economically active population is engaged in farming as farmers. There is, as would be expected in a developing country, considerable manual labor involved in the present production system. The animal population is estimated to be “seven millions, of which 30 percent are cows and bulls, 25 percent oxen, 17 percent buffaloes, 25 percent sheep and goats, and 2 percent horses.”

The cattle are concentrated in the cultivated fields and steaming jungles of the northern rim of the Gangetic Plain are less than 500 feet above sea level.” The annual rainfall is between 100 inches in the east to 40 inches in the west. The major portion of the rainfall comes during the monsoon season about 90 days in length, with the remainder of the year being mostly without rainfall. The concentrated rainfall and extreme drop in elevation combined with erosive soil types causes extreme problems of erosion. In the taluks, a fertile farm belt ranging from 5 to 55 miles wide running along the southern edge of the country, there are climatic conditions which allow for year round cropping assuming that sufficient irrigation can be provided.

The soil type and vegetation fluctuate to the extremes in a short distance due to the rapid change in elevation. Reports on land use estimates indicate that “one-third of the land lies under perpetual snow or alpine meadows... less than one-third is covered by forest and two-thirds is arable land under cultivation, and reclaimable wasteland is limited.” This would indicate that there is, compared to the total land mass, a relatively limited supply of land available for production agriculture. The demands for cultivable land are extensive as it is estimated that from 65 to 93 percent of the economically active population is engaged in farming as farmers. There is, as would be expected in a developing country, considerable manual labor involved in the present production system. The animal population is estimated to be “seven millions, of which 30 percent are cows and bulls, 25 percent oxen, 17 percent buffaloes, 25 percent sheep and goats, and 2 percent horses.”

The cattle are concentrated in the cultivated fields and steaming jungles of the northern rim of the Gangetic Plain are less than 500 feet above sea level.” The annual rainfall is between 100 inches in the east to 40 inches in the west. The major portion of the rainfall comes during the monsoon season about 90 days in length, with the remainder of the year being mostly without rainfall. The concentrated rainfall and extreme drop in elevation combined with erosive soil types causes extreme problems of erosion. In the taluks, a fertile farm belt ranging from 5 to 55 miles wide running along the southern edge of the country, there are climatic conditions which allow for year round cropping assuming that sufficient irrigation can be provided.

The soil type and vegetation fluctuate to the extremes in a short distance due to the rapid change in elevation. Reports on land use estimates indicate that “one-third of the land lies under perpetual snow or alpine meadows... less than one-third is covered by forest and two-thirds is arable land under cultivation, and reclaimable wasteland is limited.” This would indicate that there is, compared to the total land mass, a relatively limited supply of land available for production agriculture. The demands for cultivable land are extensive as it is estimated that from 65 to 93 percent of the economically active population is engaged in farming as farmers. There is, as would be expected in a developing country, considerable manual labor involved in the present production system. The animal population is estimated to be “seven millions, of which 30 percent are cows and bulls, 25 percent oxen, 17 percent buffaloes, 25 percent sheep and goats, and 2 percent horses.”

The cattle are concentrated in the cultivated fields and steaming jungles of the northern rim of the Gangetic Plain are less than 500 feet above sea level.” The annual rainfall is between 100 inches in the east to 40 inches in the west. The major portion of the rainfall comes during the monsoon season about 90 days in length, with the remainder of the year being mostly without rainfall. The concentrated rainfall and extreme drop in elevation combined with erosive soil types causes extreme problems of erosion. In the taluks, a fertile farm belt ranging from 5 to 55 miles wide running along the southern edge of the country, there are climatic conditions which allow for year round cropping assuming that sufficient irrigation can be provided.

The soil type and vegetation fluctuate to the extremes in a short distance due to the rapid change in elevation. Reports on land use estimates indicate that “one-third of the land lies under perpetual snow or alpine meadows... less than one-third is covered by forest and two-thirds is arable land under cultivation, and reclaimable wasteland is limited.” This would indicate that there is, compared to the total land mass, a relatively limited supply of land available for production agriculture. The demands for cultivable land are extensive as it is estimated that from 65 to 93 percent of the economically active population is engaged in farming as farmers. There is, as would be expected in a developing country, considerable manual labor involved in the present production system. The animal population is estimated to be “seven millions, of which 30 percent are cows and bulls, 25 percent oxen, 17 percent buffaloes, 25 percent sheep and goats, and 2 percent horses.”

The cattle are concentrated in the cultivated fields and steaming jungles of the northern rim of the Gangetic Plain are less than 500 feet above sea level.” The annual rainfall is between 100 inches in the east to 40 inches in the west. The major portion of the rainfall comes during the monsoon season about 90 days in length, with the remainder of the year being mostly without rainfall. The concentrated rainfall and extreme drop in elevation combined with erosive soil types causes extreme problems of erosion. In the taluks, a fertile farm belt ranging from 5 to 55 miles wide running along the southern edge of the country, there are climatic conditions which allow for year round cropping assuming that sufficient irrigation can be provided.
LET'S COMMUNICATE WITH THE SLOW LEARNER

N. K. Quales
Teacher Education East Texas State University Commerce, Texas

Introduction

Did you ever have a student who couldn't do a thing in the classroom, but when you went on a field trip into the agricultural mechanics shop, he would say, "I'm the leader?" Most of you have experienced this, if you have taught vocational agriculture for any length of time. Although there may be many reasons for this, we usually find that these students are educationally dejected. They can be identified by the following characteristic: (1) short attention span, (2) narrow range of interest, (3) restricted vocabulary, (4) low academic potential, and (5) slow rate of progress.

These people are the doors of life, 75 per cent of whose time will be spent with these people later in life.

There is one thing for sure; the teacher and the slow learner are not communicating with each other. The child is not learning; therefore, the teacher is not teaching him. This type of teaching is not as potent as it should be; if something is not done to prevent it. One educator recently said that most of these students become "puddlejackets" instead of "dropouts.""Conclusions and Recommendations

This is a difficult problem even for the experienced teacher, but something must be done before it is too late. Here are some recommendations:

1. Students must be taught on the level of which they are capable of learning. This may require the class to be split into two sections where possible.

2. Easier, simpler questions must be directed to less capable students during group discussions.

3. Slow learners must have extra help during supervised study periods. Some of them may not be able to read or write well, if at all.

4. Demonstration, field trips, and visual aids must be used.

5. Teacher conferences, often referred to as "off" periods, must be used in counseling the slow student.

6. Stronger emphasis in agricultural mechanics can help. These students usually like to build or repair things.

7. The teacher must show understanding and patience when working with the student.

8. More home visits can help the teacher to understand the child and his environment, thereby enabling the teacher to do a more effective teaching job.

9. There should be more emphasis on reading, if something is not done to improve the academic ability of the child.

10. The teacher, by studying the permanent folder in the counselor's office, can gain information from various parents and past performances of each student. This can serve as a guide in directing the learning of the student.

11. The teacher must take courses, attend workshops, read books and periodicals, study results of research and keep informed on modern methods and techniques in teaching the educationally deprived youth.

12. If all conscientious efforts fail, then there is a possibility that the student should be assigned to Special Education for future instruction. Of course, many small schools do not have Special Education classes.

It is time that we reeducate our selves to the task to be done. Vocational agriculture must accept their share of the slow students. Let's all join together in learning what to do. This is a challenge and we must not refuse to accept. Many of these students can become productive citizens of our society. The time for action is now.

N. K. Quales
Teacher Education East Texas State University Commerce, Texas

HENDERSON RECEIVES HONORS

The American Society of Agri-cultural Engineers has just announced that G. E. Henderson, Extension Agricultural Economist of Texas A&M has been named a Distinguished Service Honorary Member of the Society. This Distinguished Service Award is given to those who have contributed to the Society's growth and the betterment of the agricultural economics profession. Henderson, who has been a member of the Society for 20 years, has served in various capacities including as a member of the Board of Directors. He has made significant contributions to the field of agricultural economics throughout his career.

STENZEL NAMED TO NVATA POSITION

Sam Stenzel, present NVATA Treasurer, has been named Assistant To The NVATA Executive Secretary and began work in the newly created position in July 1972.

DURCEE TO HEAD DEPARTMENT

James Durkee, NVATA President, 1968-1969, has been named to head the Agricultural Education Department at the University of Wisconsin at Madison, where he will replace Jack Ruch, longtime Head of the Department who is retiring July 1, 1972.

WINTER — from page 26

1) and actual placements (see chart, item B) of the previous year’s total enrollees (including those completing and those not completing) in "field for which trained or in related field" as reported in October each year.

The "potential enrollees" line gives an enrollment projection into the future, based on work force trends and projected total enrollments. The other four lines show actual happenings as a result of the school system.

By making comparisons between the trend lines for potential enrollees, first year enrollees, total enrollees and placements (employment) figures can be made to the balance and condition of the "school system."

The relationship of the trend lines for "first year enrollees" (see chart, item B) and "number employed in the field or related field" (see chart, item E) is significant. Movement toward the right is an indication that the school system is becoming more effective.

Conversely, lines moving away from each other indicate that the enrollment is exceeding the demand for the system, due to poor quality of output, or to an actual low demand.

In addition to the charts, various graphs can be made. Examples are to compare the trend of "percentage of average employment" and the trend of "percentage of enrollees in the occupational field, or to determine the completion rate or percentage of those enrolling who become employed in the "field for which trained or a related field."

Since one of the major goals of vocational education is to "meet the demands of the labor market," another goal in this period is that of comparing a continuation of the present level of "employed output" and the improvements in terms of the "potential enrollees," calculated by dividing the number projected to be "placed" by the period of the projected demand for that period. This comparison is one measure of the efficiency of the school system Is one projected to have in supplying the estimated demand.

Forecasting, evaluating and all the related components can become very complex. But if educators will develop a mental attitude which places first priority on career results (output) to goals and objectives, and expend energy on processing "easily only when the results are not as expected, the activity will take on greater meaning.

The AGRICULTURAL EDUCATION MAGAZINE AUGUST, 1972

46

47
Stories in Pictures

by Richard Douglass

Area III FFA Members participate in Electrification Contest at the University of Southwestern in Lafayette, Louisiana. The contest is sponsored by Louisiana Investor-Owned Electric Companies. (Photo by John Valley, Supervisory-Executive Secretary Louisiana Association of FFA)

David Lewis, right, receives valuable instruction from Mrs. Charles Jeffries in cutting and packaging meat during his work experience program in his senior year at Greensboro Locker Plant. David, a school dropout, returned to graduated from Greensboro High School, Greensboro, West Virginia, in 1976. He completed 1 year of Production Agriculture and 2 years of an Agricultural Sales Service course. He is now employed in the dairy department of a supermarket. (Photo by Guy E. Cline, Program Specialist)

High school students observe antihelminthic gleaning held by Dr. Thomas F. Albert of Greenbelt, assistant professor of veterinary science, during demonstration on North America’s largest tru kale Farming animal at fourth annual Science in Action conference on the University of Maryland campus in College Park. One-day event was sponsored by College of Agriculture to give high school students and their teachers an insight into the application of science to modern agriculture. Attendance included 318 students and 75 teachers from 104 public and private or parochial schools representing 19 Maryland counties and the city of Baltimore. (Photo from Info. & Pub. Department, University of Maryland)

Agricultural Education

volume 45
September, 1972
Number 3

CAN WE SHOW A PERSONAL INTEREST IN EVERY STUDENT?

Theme—A GUIDANCE ROLE