Stories in Pictures

by Richard Douglas

Teacher Education: Study the role of Computers in Agriculture. John Thompson, Ag and Extension Education, Wisconsin, above, reviews the capabilities of the talking computer. The telephone conversation with the computer was demonstrated by Dr. Stephen R. Harris, Ag Econ., Michigan State. Below, Dr. Ben Byler, Ag Ed., Iowa State, gives his hand at operating the computer in a “Moon Landing” simulation. The licensing section includes Dr. Frank Baker, AAS, University of Nebraska and Gary McVey, Mich. Ag., South Dakota State University. (Photo by Richard Douglas)

Meaningful Exploratory Career Education — Charles Billings, Vocational Agriculture Teacher at Broadmoor Jr. High School in Baton Rouge, Louisiana instructs students in Ornamental Horticulture. This is one of the most popular departments in this urban school. (Photo supplied by J. C. Simmons, Assistant State Supervisor, Vocational Agriculture.)

Teachers also Learn by Doing — Saving Labor with Electrical Controls is a part of many Voc-Ag Courses. These Nebraska Teachers are checking themselves out on a Kit of Electrical Controls. Six kits were made available by the Nebraska Inter-Industry Electrical Council and the AE Dept. Power cord adapters across the state help make the kit between teachers and save as consultants when necessary. Coordination, testing materials and use instructions are provided by AE Ed. Dept. Original kit design provided by University of Minnesota, Department of Engineering. For more details, see December 1973 Ag Ed. Magazine, pp. 137. (Photo supplied by Richard Snergow, Coordinator of In-Service Agricultural Teacher Education.)

Career Awareness Promoted — McAdory, Alabama, Agriculture Education Teacher Donna Rice, left, and elementary student Rhonda Moore, Vinson Ryals, and Anthony Price, listen as a Birmingham area vocational teacher explains careers in vocational education that enrich the well being of citizens, worldwide. (Photo supplied by Cecil Gast, Public Information Specialist, Auburn University.)

Agricultural Education

Volume 45

March, 1973
Number 9

Theme —

CAREER EDUCATION:
SECONDARY SCHOOL VISION
From Your Editor ... EMPHASIS: PRACTICE IN DECISION MAKING

It appears evident that implementation of the career education concept will structure the student's decision-making capabilities more than any previous educational concept. Today's youth are bigger, healthier, smarter, and more aggressive than previous generations. These young people have grown up in a society where technology has changed rapidly. They are used to thinking, working, and moving at a faster pace, and are typically less patient with others than their predecessors.

These characteristics, if properly harnessed and guided, are positive traits. As a young person begins to ask, "Who Am I?", "What Abilities Do I Have?", and "What Do I Want To Do?", he desperately needs someone or group(s) that cares and shows an interest in guiding him to become aware of, explore, and define his interests.

Career education, through structured educational activities, enables the student to practice decision-making beginning in the lower elementary grades, through awareness and perception of self, family, neighborhood and how people are dependent upon each other. He grows in his decision-making role in junior high, by expanding in-depth the requirements of various occupations, in order to make general but important decisions concerning occupational areas he would and would not want to pursue preparation for while in high school. The young person who has received adequate career awareness education, exploration experiences, and understands his or herself, should be able to make intelligent decisions regarding high school courses.

Important to the decision-making sequence is that the student be encouraged to establish an occupational goal at the time he enters high school, so he can select high school courses that will help him reach that goal, whether it be a job, technical school, or four year college program. For the last two years, vocational agriculture has taught decision making through students' management of supervised farm programs, with guidance of parent and school. Career education broadens the sphere of practice in decision-making both vertically and horizontally, with the ultimate goal of the student being able to have confidence in the decisions he makes.

Ronald C. Kowalka
Research Associate
The Ohio Agriculture Education Curriculum Materials Service
The Ohio State University
Columbus, Ohio

The expert in career education is not the traditional vocational educator. Vocational education can no longer be aimed at turning out students who can perform a skill but don't know the many industries or job positions in which this skill is needed. I purport that education in the value of information available regarding career development and decision making, that many vocational agriculture teachers use the traditional method and base their curriculum and teaching open job skills.

What is so wrong with this, you may ask? Is it wrong to base your curriculum around helping students gain skill competencies? For many years, "Vocational Education" has been offering programs which trained students for specific jobs. However, today our technology is changing rapidly and many of today's jobs require additional training, in many cases even before the student begins the work for which he was hired. The student, now worker, has to be able to cope with the changing technology. He needs to know what to do about his career when the job for which he was prepared is no longer available or not to his liking. He has to make a decision—a career decision.

The decision making skills you, as the teacher, have helped the student learn may well decide that person's ability to achieve a successful career. Decision making is a skill needed by all people regardless of position in life, especially the skill as it relates to career decisions. We are identified by our occupational orientations. Our values, political interests, attitudes toward other people and groups, (Continued on next page)
MEANING TO THE TEACHER

Keith Goldhammer and Robert Taylor in Career Education, Perspectives and Promise, have indicated that the most fundamental change in vocational education will result from the fact that the vocational education teacher will be responsible not only for helping students acquire certain job entry knowledges and skills, but also for providing them opportunities to place these learnings into the perspective of their own career development.

As a result, the teacher is no longer simply imparting knowledge but is also helping students to develop self-awareness and self-confidence. This is a significant shift in the role of the teacher, who now must also act as a mentor and guide for students.

BOOK REVIEW

THE SCIENTIFIC FEEDING OF CHICKENS by Titus, Harvey W. and Jonius, C. G. (1971, 610 pp.)

This book is a basic subject important to all of us. It is especially important, if not essential, to livestock farmers and feed dealers, and vital to feed manufacturers.

The book, The Scientific Feeding of Chickens, is especially appropriate for poultry producers who have limited knowledge of poultry nutrition and management. It is also useful for poultry feed manufacturers, feed dealers, and poultry scientists.

The book is divided into three main sections: growth and nutrition; production and physiology; and management and economics. Each section is well organized and written in a clear, concise manner.

The book is well illustrated, with numerous tables, graphs, and photographs that help to illustrate the points being made. It is also packed with practical information that can be applied to real-world situations.

The book is suitable for high school students and can be used as a textbook or a reference book. It is also a valuable resource for poultry producers and feed dealers.

The book begins with some fundamentals of poultry growth and nutrition, and then moves on to detailed discussions of various feed ingredients, their usage, and their effects on poultry performance. The book also provides guidelines for feeding different classes of birds and for determining the nutritional requirements of poultry.

The book covers a wide range of topics, from basic nutrition to more advanced concepts such as immune response and stress management. It is an excellent resource for anyone involved in the poultry industry, whether they be producers, feed manufacturers, or researchers.

The book is well-written and easy to read, with a good balance of theory and practice. It is a valuable addition to the library of anyone interested in poultry science.

JACK MERGER

1. Titled our courses to attract: attention from students, ad- dressees and the State Vocational Education Depart- ment.

2. Prepared behavioral objec- tives to ensure ourselves that the material presented is de- signed to prepare the student to fulfill his occupational goal.

3. Designed and aligned our courses to respond to the demands of our community.

4. Built a course calendar to offer the opportunity for challenge from the present mechanic to the pre-veterinary student.

5. Used our community re- sources to develop our areas to pro- vide students with the knowl- edge and skills necessary to enter the labor force with an adequate job and steady income upon gradu- ation.

6. Specialize as teachers in one or two areas that strive to develop our areas to pro- vide students with the knowledge and skills necessary to enter the labor force with an adequate job and steady income upon gradu- ation.

7. Titled our courses to attract: attention from students, ad- dressees and the State Vocational Education Depart- ment.

8. Prepared behavioral objec- tives to ensure ourselves that the material presented is de- signed to prepare the student to fulfill his occupational goal.

9. Designed and aligned our courses to respond to the demands of our community.

10. Built a course calendar to offer the opportunity for challenge from the present mechanic to the pre-veterinary student.

11. Used our community re- sources to develop our areas to pro- vide students with the knowl- edge and skills necessary to enter the labor force with an adequate job and steady income upon gradu- ation.

12. Specialize as teachers in one or two areas that strive to develop our areas to pro- vide students with the knowledge and skills necessary to enter the labor force with an adequate job and steady income upon gradu- ation.

KENNETH W. JOSTAD, Instructor

Agriculture Occupations Department
Lincoln Community High School
New Lenox, Illinois

certain job entry knowledges and skills, but also for pro- viding them opportunities to place these learnings into the perspective of their own career development.

As a result, the teacher is no longer simply imparting knowledge but is also helping students to develop self-awareness and self-confidence. This is a significant shift in the role of the teacher, who now must also act as a mentor and guide for students.

The book, The Scientific Feeding of Chickens, is especially appropriate for poultry producers who have limited knowledge of poultry nutrition and management. It is also useful for poultry feed manufacturers, feed dealers, and poultry scientists.

The book is divided into three main sections: growth and nutrition; production and physiology; and management and economics. Each section is well organized and written in a clear, concise manner.

The book is well illustrated, with numerous tables, graphs, and photographs that help to illustrate the points being made. It is also packed with practical information that can be applied to real-world situations.

The book is suitable for high school students and can be used as a textbook or a reference book. It is also a valuable resource for poultry producers and feed dealers.

The book begins with some fundamentals of poultry growth and nutrition, and then moves on to detailed discussions of various feed ingredients, their usage, and their effects on poultry performance. The book also provides guidelines for feeding different classes of birds and for determining the nutritional requirements of poultry.

The book covers a wide range of topics, from basic nutrition to more advanced concepts such as immune response and stress management. It is an excellent resource for anyone involved in the poultry industry, whether they be producers, feed manufacturers, or researchers.

The book is well-written and easy to read, with a good balance of theory and practice. It is a valuable addition to the library of anyone interested in poultry science.

JACK MERGER

1. Titled our courses to attract: attention from students, ad- dressees and the State Vocational Education Depart- ment.

2. Prepared behavioral objec- tives to ensure ourselves that the material presented is de- signed to prepare the student to fulfill his occupational goal.

3. Designed and aligned our courses to respond to the demands of our community.

4. Built a course calendar to offer the opportunity for challenge from the present mechanic to the pre-veterinary student.

5. Used our community re- sources to develop our areas to pro- vide students with the knowl- edge and skills necessary to enter the labor force with an adequate job and steady income upon gradu- ation.

6. Specialize as teachers in one or two areas that strive to develop our areas to pro- vide students with the knowledge and skills necessary to enter the labor force with an adequate job and steady income upon gradu- ation.

7. Titled our courses to attract: attention from students, ad- dressees and the State Vocational Education Depart- ment.

8. Prepared behavioral objec- tives to ensure ourselves that the material presented is de- signed to prepare the student to fulfill his occupational goal.

9. Designed and aligned our courses to respond to the demands of our community.

10. Built a course calendar to offer the opportunity for challenge from the present mechanic to the pre-veterinary student.

11. Used our community re- sources to develop our areas to pro- vide students with the knowledge and skills necessary to enter the labor force with an adequate job and steady income upon gradu- ation.

12. Specialize as teachers in one or two areas that strive to develop our areas to pro- vide students with the knowledge and skills necessary to enter the labor force with an adequate job and steady income upon gradu- ation.

KENNETH W. JOSTAD, Instructor

Agriculture Occupations Department
Lincoln Community High School
New Lenox, Illinois

Four hundred and fifty-six students in Agriculture in a high school returned surveys, nearly twenty-five were included in the data. This is true to the fifty-three students in the Agriculture teacher seven years ago. Now there are four teachers in Agriculture in this semi-suburban area composed of four small towns.

To obtain this growth in our Agriculture Department we have done several things:

1. Titled our courses to attract: attention from students, addressed and the State Vocational Education Department.

2. Prepared behavioral objectives to ensure ourselves that the material presented is designed to prepare the student to fulfill his occupational goal.

3. Designed and aligned our courses to respond to the demands of our community.

4. Built a course calendar to offer the opportunity for challenge from the present mechanic to the pre-veterinary student.

5. Used our community resources to develop our areas to provide students with the knowledge and skills necessary to enter the labor force with an adequate job and steady income upon graduation.

6. Specialize as teachers in one or two areas that strive to develop our areas to provide students with the knowledge and skills necessary to enter the labor force with an adequate job and steady income upon graduation.

As Animal Science is my main responsibility, I will discuss what has occurred in the past two years and plans for the future. A year ago there were two courses: Animal Sci- ence, dealer with farm animals; and Advanced Animal Science, covering in detail the aspects of nutrition, reproduc- tive disease, judging and anatomy.

A survey of 1970 graduates who enrolled in Pre-Veterinary Medicine in college revealed that none of them had taken any Animal Science courses at Lincoln-Way. Also there were smaller numbers of girls and small animals in the area than farm animals. In the fall of 1972 we initiated the Horse and Small Animal Science, which replaced Animal Science. Hail our time will be spent on horticulture and the care of half on dogs, cats, fish, rabbits, and rabbit pens.

Helping prospective veterinary students required a little different pro- il. We designed Pre-Veterinary Occupations to expose them to basic necessities and information for a care- as a Veterinarian or Animal Health Technician. Included in the course is the dissection of a fetal pig, complete examination and exposure to artificial insemination in animals, lab sessions in dehorning and castrating, analysis of foodstuff, and a tour of a meat packing plant.

To further expand our Animal Sci- ence curriculum, we are planning a four-year sequence to begin operating in two to four years. We would like to develop a two-year junior-senior program to train students in Animal Health Techniques for emphasis on small animals. Their training would in- clude: animal handling, grooming, animal surgery, minor operations and administering medications. At least one semester of their senior year would be spent working as an intern in Animal Health Technicians with some type of certification upon graduation. The response to our present pro- gram has brought more girls into the Animal Science. There are thirty-eight girls and eighteen boys in the course. The Animal Science while Pre-Veterinary Occupations has eleven girls and seven boys. Our goal at Lincoln-Way is to stimulate the student to prepare himself for the veterinary field and enter the labor force with an employ- able skill. At the same time we hope to make him conscious of his environment and his role in developing the world around him to provide satisfac- tion for himself and the generations of the future.
Agriculture Curricula "Relevant" — In Career Education Programs

Fred J. Pumper
Agricultural Teacher Educator
Western Illinois University
Macomb, Illinois

The question of agriculture curricula being relevant is being raised more often by students, parents, and society. Webster defines relevant as "bearing or applying to the matter in hand; it implies a traceable and significant connection, fitness for or appropriateness to the situation or occasion, so close an association with the matter in hand that it cannot be disregarded. If we as agricultural teachers and agricultural teacher educators define the relevancy of our curricula and relate it to the students who are enrolling in agriculture curricula then there are some profound implications. It is not surprising therefore that the question of relevancy of vocational agriculture curricula and employability is being raised by students, parents, and society.

Smaller High School—Relevant Curriculum

It has often been said that small high schools cannot develop relevant off-farm agriculture curricula because of their size and often their location in smaller communities. The Atkinson High School has an enrollment of less than 200 students, only two of whom are enrolled in agriculture curricula. Atkinson has a population of 1,056.

The agriculture enrollment figures suggest that students see the curriculum as relevant, it is likely to attract enrollment. The first two years are two one-year courses pertaining to the basic in agriculture, the junior and senior years consist of six one-quarter courses from which the student will select courses pertaining to placement in an agricultural business (Cooperative education between school and business).

Case Example of Relevancy

Let us follow an example of student Kevin Gunstien from a Cooperative Agriculture Curriculum at Atkinson to his own business. Kevin enrolled in the cooperative program because he had an interest in agriculture, was raised on a farm where there was a diversified opportunity, and he was working with people. He became interested in the cooperative program through meat marketing and judging in his local agricultural show. Kevin's cooperative training program (week experience) included positions as locker plant slaughter house attendant, locker plant butcher, butcher and meat cutter in Atkinson, and meat cutter and fryer at Geneseo. Kevin and his mother purchased Clover Farm Store in Atkinson near the end of his senior year. It is to be noted that over two years of work experience Kevin was assuming more responsibility.

Kevin was active in the FFA Chapter serving as Treasurer, had a "B" average in high school, and was a heavy weight champion wrestler. Some of the ways the cooperative training program aided Kevin included: It helped develop a desire to develop sound habits of accuracy and workmanship and enthusiasm, the development of sound habits of accuracy and workmanship and enthusiasm, the development of sound habits of accuracy and workmanship and enthusiasm, and an increased level of responsibility and pride in his work. The increased level of responsibility and pride in his work.

Career education programs cannot be effectively conducted emphasizing the use of utilizing appropriate resources in the community. The educational process should not be confined to the walls of a classroom or shop or even to the school grounds. The teachers are responsible for the teaching laboratory which can be used to make career education programs relevant and meaningful.

One way to plan for effective use of community resources is to use an advisory council which covers primarily persons outside of the teaching profession to build "connecting links" between the school and the community. Teachers of agriculture have used local advisory councils effectively for many years, but the use of councils which represent people and industry in a region or in a specific area is less common. If the career education program is to be implemented effectively in community colleges, area centers, secondary schools, and elementary agriculture programs, a great deal of coordination and articulation must be practiced by all concerned. Effective advisory councils can help educators coordinate and articulate local programs, but regional and state councils are needed to coordinate and articulate a statewide program of career education in a particular occupational area.

The statewide occupational council is a fairly new development in Illinois. The Advisory Councils have been formed for ornamental horticulture, agricultural mechanics, horse science, and young farmer training. Membership on these councils includes teachers, industry representatives, university personnel, and other persons who have an interest in the occupational area to be served and in vocational education. In instances, the statewide advisory councils make their recommendations to the State Occupational Consultant Unit in Applied Biological and Agricultural Occupations; however, their influence and support extends beyond the State Office level. Statewide councils in Illinois have assisted with the development of new occupational clusters, teacher qualifications, and the promotion of agricultural occupations programs in community colleges, high schools, and area centers.

The ornamental horticulture state advisory council was started in Illinois in 1965. The regular members represent the Illinois Commercial Arborist Association, the Illinois Landscape Contractors Association, the Illinois Nurseries' Association, and the Turf Foundation. Ex officio members represent teacher education, the Illinois Division of Ornamentals, the Department of Agriculture at the University of Illinois, Vocational Agricultural Service at the University of Illinois, Agricultural Service at the University of Illinois, Agricultural Service at the University of Illinois, and the Agricultural Education Consultant Unit. A minimum of three meetings are held each year at campus and school sites where horticulture programs are offered. In recent years, the council has prepared a brochure on horticulture careers, made recommendations concerning curriculum content, and teacher qualifications, and reviewed programs at community colleges and high schools with the teachers employed at these schools. Perhaps one of the greatest benefits of the ornamental horticulture state advisory council has been the dissemination of the exchange of ideas and opinions among industry personnel, teachers, and state officials.

Members of the Illinois Ornamental Horticulture Consultant Unit, and state staff.

The agricultural mechanics council and young farmer council have provided advice regarding the need for new programs, employment and manpower trends, facility and equipment recommendations, and recommendations concerning instructional materials.

The horticulture council recently encouraged community colleges and high schools to consider new vocational programs in home science. Such a council serves at a catalyst in the change process by offering support, encouragement, and help to school officials who are sometimes reluctant to start a new, untested program.

The young farmer education council is the largest and newest statewide council in Illinois. The council was organized in 1971 with 35 members. At this time, there were no young farmer programs or young farmer associations in the state. The council members were asked to survey their communities to find out how many young farmers were eligible for enrollment in young farmer programs. A brochure and program guide were prepared to help publicize the need for young farmer programs. At the annual state conference for agricultural occupations teachers, a kick-off luncheon was held to provide free lunches for teachers, and their wives to stimulate program.

Agricultural Education Councils can build "connecting links" between schools in communities, areas, and in the state.

(Continued on page 202)

Paul E. Hemp, Teacher Education
University of Illinois, Urbana

MARCH, 1973

The Agricultural Education Magazine
USE OF FEEDBACK IN PROGRAM PLANNING

Holle Thomas
Agricultural Education Division
University of Illinois
Urbana, Illinois

This circular pattern involves the flow of information that may include the need for program change. Given this definition of feedback, it can be seen that a variety of feedback must be entered into the system, the program developer's thinking, and information collected categories for a given employment area should be updated periodically by obtaining feedback from the advisory council or employers of students who are placed for occupational experience in the specific employment area under consideration.

The quality of the instruction will have much to do with the quality of student learning. Questions that can be asked are (1) is the subject matter being taught for preparatory purposes for the course or (2) are the students learning that which is purported to be taught; (3) how do students feel about what is being taught; and (4) what is the students' evaluation of the instructor(s)?

To obtain the answers to these questions, observations may be made for room, while for other data, students may be questioned. To determine whether or not the subject matter being taught is relevant to the specific area of employment for each state and local service, the following procedures are necessary:

1. State objectives:
 a. To determine the knowledge needed for job performance.
 b. To determine the knowledge needed for job training.

2. Select a sample of students:
 a. To determine the knowledge needed for job performance.
 b. To determine the knowledge needed for job training.

3. Administer a test:
 a. To determine the knowledge needed for job performance.
 b. To determine the knowledge needed for job training.

4. Analyze data:
 a. To determine the knowledge needed for job performance.
 b. To determine the knowledge needed for job training.

5. Make recommendations:
 a. To determine the knowledge needed for job performance.
 b. To determine the knowledge needed for job training.

In conclusion, we can say that feedback is an essential component of the educational process. It allows educators to evaluate the effectiveness of their programs and make necessary adjustments to improve student learning. The use of feedback in program planning is crucial for ensuring that students are receiving the knowledge and skills they need to succeed in their vocational careers.
must be articulated so that interested students may be identified and their skills and interests reviewed. An advisory council can provide information to the students about agricultural education and the opportunities it presents. Under the guidance of the advisory council, students should be able to choose the courses of study that meet their individual needs.

Conclusions
The concept of feedback is not new, nor is the idea of using community resources and community interest in programs. Information about the attitudes of the faculty can usually be obtained by examining the program and communicating with the faculty. Feedback on student programs can be obtained by examining the program and communicating with the students.

In Co-operative Agriculture are you and work, jobs and opportunities, applying for a job, you, your employers and your co-workers, your progress on the job, self-inventory, and personal effectiveness. Another group of topics in the semester managing money, buying goods and services, bank services, credit, contracting methods and services, buying and using government services, social security and retirement, and insurance. The career is closed with your vocational development and post high school education and training.

Steps in Developing Curricula

Agriculture is the study of developing agriculture curricula. If it is necessary for him to (1) assess the needs of students and society and develop the objectives, (2) plan and implement the curricula, and (3) evaluate the curricula to determine if the objectives have been met. Therefore, a study of the teaching processes and associated learning conditions. An agricultural science program should include: (a) needs of the student, (b) study of the curriculum, (c) study of curriculum materials and other resources, (d) study of the performance of the students, and (e) study of the feedback from the students. The council should be involved in the council's total work. The council should include: (a) members of the council, (b) members of the council, (c) members of the council, and (d) members of the council. The council should be involved in the council's total work. The council should include: (a) members of the council, (b) members of the council, (c) members of the council, and (d) members of the council. The council should be involved in the council's total work. The council should include: (a) members of the council, (b) members of the council, (c) members of the council, and (d) members of the council.
THE DISADVANTAGED STUDENT: WHAT WILL HAPPEN TO HIM?

Charles P. Sauerwein
Vocational Agricultural Teacher
Haven, Kansas

Bill snarled into the voy-ag class-
room, stopped, frowned down in his chair and began folding his name
book. "Man, I wonder how I'm going to get that stupid English
assignment done by tomorrow?"

He caught a few words from his teacher talking about dairy cows, ... the dairy cattle scorecard had four major scorecards.

"Hey, come on Billy-boy," mimicked Larry sitting next to him, "why don't you cut out and pencil out and start tak-
ing notes."

"I don't even have one," Bill snapp-
ed back.

And at another school, "OK, I've got the tests graded and ready to pass out. Grades ranged from a 96 to a 48; Jim, Dewey, Ken, etc."

"Gosh, I hope I did better on this than that geography report," Bob thought. "Dad's always chomping on my back about getting good grades. Just because I get all the extra baseball to wear out, I mean ... Bob, here's your test," re-marked the teacher.

"Well, I got a forty-five."

"Did you really get that score?"

"Hey guys, Bobby blew it again!"

Are these concern scenes in our high school classrooms today? "Hardly not," explains Darrell Cardell, grad-
uate research assistant in adult and
occupational education. "About one-
third of the students going through high school today are disadvantaged. By that I mean they simply aren't making it in school," said Professor
Kingston, agrees. "Like in the examples given earlier, the students lack motivation or are slow learners."

Both Cardell, a Richmond native, and Kingston, a Kansas City Tech-
ical Assistant in adult and occupational education from Marshall, N.Y., are teaming up on a Kansas State Depart-
ment of Education sponsored project

"The general public has a mis-conception of the term 'disadvantaged,' explained Carratel. "Too many times, it is associated
with only the economically poor, minorities, the elite and even upper-
class students can also be dis-ad-vantaged."

want an analogy, it's kind of like Steve Marquardt in Topeka. I remember back to the old condicti-
oning theory we studied in educational psychology now coming to real life. Pavlov's dog has learned to salivate when a bell rings and that dog's salivation is not any better today."

"Other students may feel the same way, that doesn't help either," re-
vealed Cardell. "You have to start with the individual and then move up to the community, and make him realize he's got to make the effort."

"I think the production team should work closely with the teacher, because the ag teacher should know what's going on," affirmed Kingston. Cardell would like to see a program started at K-State where teachers aides are trained to be auxiliary personnel, not perjured as like teachers. "These teachers aides TA work has to be done carefully."

ADAPTING TO STUDENT VOCATIONAL OBJECTIVES THROUGH INDEPENDENT STUDIES

Larry E. Miller, Assistant Professor, Agricultural Education, College of Education, Virginia Polytechnic Institute and State University, Blacksburg, Virginia

What is a teacher to do with that single student who has a vocational objective completely different from the general student? A great deal of the problem is foreign to the department's course offerings. This particular teacher

Independent study should provide greater relevance to the student, and allow the student greater flexibility in planning.

A practical and realistic approach for the teacher may be through the use of independent studies. Most inde-
pendent study programs have been for major courses over a two-year span, but they should be spread out to a wider range of pupils at all levels of instruction.

Independent study should provide greater relevance to the student, and allow the student greater flexibility in planning.

A practical and realistic approach for the teacher may be through the use of independent studies. Most inde-

Independent study programs have been for major courses over a two-year span, but they should be spread out to a wider range of pupils at all levels of instruction.

In order for this program to succeed, the teacher should provide a course of study. How can vocational agriculture instructors better meet the needs of these students? In the first course, it would be desirable to offer the student the means necessary to meet the goals of the program. The term paper or project report. Independent studies at the high school level have taken on a different role. The project can be conducted cooperatively with other school departments and teachers. Projects could be on such subjects as agricultural mechanics programs, occupational experience programs, or even a bulletin board; implementation of a practice at home, or a work cen-

Students are disadvantaged when they are conditioned to a lack of success.

"You should try to recognize the disadvantaged students in your class," Cardell pointed out. "Grades, personality, personal attitudes, and class (Continued on next page)

"The post high school goal," indicated Cardell. "The ultimate goal of the K-State teacher should be to have his students enter the job market prepared, there-
fore, job placement counseling is very important," he expressed. I found out that this means to keep up to date on post secondary education, trade schools, voc-technical schools, business schools, and universities. It seems to me like vocational education teachers have to go to a Congress for a 36-hour day in order to get every-
thing done that they've supposed to."

I think the production team should work closely with the teacher, because the ag teacher should know what's going on," affirmed Kingston. Cardell would like to see a program started at K-State where teachers aides are trained to be auxiliary personnel, not perjured as like teachers. "These teachers aides TA work has to be done carefully."

(Congraduated students)
ASSISTANTSHIPS AND FELLOWSHIPS IN AGRICULTURAL EDUCATION, 1973-74

H. R. Crawford

The 1973-74 survey of the Publications Committee of the American Association of Teacher Educators in Agriculture of continuing availability of assistantships.

Key to Understanding:
- Data provided are in the following order: Nature of assistantships (number available); number of months available during year; beginning month of employment; amount of work expected; monthly remuneration and other considerations such as remission of fees; whether aid is for master's, advanced graduate program, or other funds; the deadlines for applications; and the person to be contacted.

The following assistantships are open to those in the preparation for a career in agricultural education.

University of Minnesota-Crookston
- Research assistantships (2); 9 months; July 1, 1974; $1200 per month; all expenses paid; all expenses paid; master's and doctoral.
- Teaching assistantships (2); 9 months; July 1, 1974; $1200 per month; all expenses paid; master's and doctoral.

University of Minnesota
- Research assistantships (2); 9 months; July 1, 1974; $1200 per month; all expenses paid; master's and doctoral.
- Teaching assistantships (2); 9 months; July 1, 1974; $1200 per month; all expenses paid; master's and doctoral.

University of Missouri-Columbia
- Research assistantships (2); 9 months; July 1, 1974; $1200 per month; all expenses paid; master's and doctoral.
- Teaching assistantships (2); 9 months; July 1, 1974; $1200 per month; all expenses paid; master's and doctoral.

University of Nebraska-Lincoln
- Research assistantships (2); 9 months; July 1, 1974; $1200 per month; all expenses paid; master's and doctoral.
- Teaching assistantships (2); 9 months; July 1, 1974; $1200 per month; all expenses paid; master's and doctoral.

University of North Carolina at Chapel Hill
- Research assistantships (2); 9 months; July 1, 1974; $1200 per month; all expenses paid; master's and doctoral.
- Teaching assistantships (2); 9 months; July 1, 1974; $1200 per month; all expenses paid; master's and doctoral.

University of Tennessee
- Research assistantships (2); 9 months; July 1, 1974; $1200 per month; all expenses paid; master's and doctoral.
- Teaching assistantships (2); 9 months; July 1, 1974; $1200 per month; all expenses paid; master's and doctoral.

University of Wisconsin
- Research assistantships (2); 9 months; July 1, 1974; $1200 per month; all expenses paid; master's and doctoral.
- Teaching assistantships (2); 9 months; July 1, 1974; $1200 per month; all expenses paid; master's and doctoral.

Virginia Polytechnic Institute and State University
- Research assistantships (2); 9 months; July 1, 1974; $1200 per month; all expenses paid; master's and doctoral.
- Teaching assistantships (2); 9 months; July 1, 1974; $1200 per month; all expenses paid; master's and doctoral.

Washington State University
- Research assistantships (2); 9 months; July 1, 1974; $1200 per month; all expenses paid; master's and doctoral.
- Teaching assistantships (2); 9 months; July 1, 1974; $1200 per month; all expenses paid; master's and doctoral.

This list of assistantships and fellowships in agricultural education is prepared annually by the Publications Committee of the American Association of Teacher Educators in Agriculture. H. R. Crawford is Professor and Head, Agricultural Education, Iowa State University, Ames.
Leaders in Agricultural Education:

GUSTAVUS A. SCHMIDT

If you go back and review the forty, fifty, early issues of this professional magazine there are few years from 1929 until 1949 that one or more articles by G. A. Schmidt doesn’t appear. When he was appointed Special Editor for the section entitled Supervised Practice in May, 1930, he was cited as one of the most prolific writers in agricultural education. For a man born in Gappingen, Germany, in 1877 (commonly referred to as Gustavus Schmidt) he rapidly emerged as a leader in educational work in agriculture, for which he had little professional training as we know it today.

One of the reasons for his emergence was his ability to provide the “nuts and bolts” kind of information teachers were grasping for in those early days. One of his earliest Agricultural Education articles dealt with types of lesson plans. He collected vocational agricultural teachers to analyze the kind of learning that was to take place and then select and use the format of lesson plan best suited to getting that learning across. He identified the three great lesson lesion (better terminology may be “units”) as Organic, Informational and Managerial. What he advocated in September, 1931, still has much application forty two years later.

Another of his “nuts and bolts” areas was in adult or evening classes. Here again he encouraged vocational agricultural instructors to analyze what they were attempting to do and select the procedure for best doing the job with adults. In an article entitled “Educational Procedures in Evening Classes” he discussed in detail what he called the informing procedure, the instructing procedure and the conferencing procedure. If we go back and review this May, 1932, article we find again that it has much applications in our time for adult or evening school programs and encouraged vocational agricultural personnel to get involved.

“Doc” Schmidt was also a practical minded research. Much of his early research was aimed at determining the kinds of things which should be going on in vocational agriculture. An article in 1932 that is still held in high regard “the field of vocational agriculture” had about “home projects.” Another set in 1933 reported that 83.3 percent of the students in vocational agriculture conducted their “home projects” on their home farm. However, he was highly concerned about the remainder who had no project or conducted them on a vacant lot. He concluded that article by stating that “vocational agriculture teaching could be held liable by those students who were not getting a real practical farm experience.” He included an article from a Denver paper, as a support, which told of two men who had collected damages from an instructor who had tried to teach people principles of farming by practicing on tin cans. The deeds and works of “Doc” Schmidt make it easy to develop a sound philosophy of vocational education and particularly of vocational agriculture even in today’s world.

Dr. G. A. Schmidt, Professor Emeritus of Agriculture, was first employed at Colorado Agricultural and Mechanical College (now Colorado State University) in September, 1919. Prior to that time he was Department Head for Agriculture and Rural Sociology at Whitewater (Wisconsin) State Normal from 1915-1919. He also spent some time farming in Illinois and working in the lumbering industry in the Pacific Northwest. There are some indications that he was involved in the contracting business for a while, but soon decided education was his field.

His educational background included an A.B. degree from the University of Illinois in 1915. This was followed by a Master of Science degree from the University of Denver in 1916 with major fields in General Science and Education. He was awarded a Doctor of Philosophy degree from Columbia University in 1932 with a minor in Agricultural Education.

His first appointment at Colorado State University in 1919 was as Associate Professor in charge of Agricultural Education in the Department of Rural and Vocational Education. He was advanced to Professor of Agricultural Education in 1937 and served in that capacity until retirement in 1945.

And his wife, Sarah Lindsay Schmidt, were prolific writers. She wrote primarily children’s and histori.

The author, Ramsey M. Greaves, is Assistant Professor, Agricultural Education, Colorado State University.

R. M. Greaves

TRACTORS HYDRAULICS
--Something Old--Something New

Thurston Spaulding, Sr.
Teacher of Agricultural Mechanics
Hobkirk High School
Newton Grove, North Carolina

A new and challenging area of Farm Mechanization for the teacher of agriculture is hydraulics. This unit of instruction offers sophistication and a new look at the field of Farm Mechanization for the student of agriculture. Research shows that there is a need for mechanics in the area of hydraulics, especially tractor hydraulics. Hydraulics is another area of mechanics that offers mechanical skills that will prepare the farm boy of the future, though in a different perspective than the farm boy of the past. A broad use of tractor hydraulics has prompted our administration and agricultural department to implement this course in depth. The student is introduced to the fact that basic tractor hydraulics overhaul is applicable to all phases of hydraulics, whether it is in automatic transmissions, or hydraulics. A concept that the teacher should keep in mind is that instruction should be well organized, consequently the teacher should prepare himself fully before delving into this course. Service tools, testing equipment, and proper teaching materials are necessary, in that this course is very technical, and an excellent “learn-to-do-by-doing” activity.

I would like to share a few ideas that make our hydraulic instructional program run. First, having a good theoretical background past and present, and knowledge of theory and practice, in that it lends itself to a “hands on” method of activity. We have been lucky, in that we were able to secure local dealer and equipment dealers and tractor mechanics is essential. In that they provide us with teaching materials and instructive advice. For example, a local dealer in our area provides us with a new tractor, new equipment, and new and old hydraulic systems for teaching aids. Later in the course, the dual nature of the theory of hydraulics, shop skills are provided.

The students and adult farmers of our school community provide us with from eight to ten tractors for hydraulic overhaul and repairs. These tractors are also used in our tractor turn-up program. We have found that hydraulics is as essential to the farm boy’s knowledge of mechanics as any other area of the farm tractors’ and other farm machinery operation. The students are divided into groups of four. Each group examines the function and performance of hydraulic pumps, hoses, valves, cylinders, ram cylinders, seats, and gages. Following this, we visit a local dealer who acquaints the boys with different uses of hydraulics on tractors and other farm machinery. We then return to the shop for disassembly, repair, service, and overhaul of the tractor’s hydraulic systems provided by our boys.

We found that inadequate understanding regarding which consti.

Hill and Children are making depth ad- justments on a new hydraulic cylinder. Hydraulics is the basic problem farmers and students encounter in hydraulics. The hydraulic systems of the tractor and other farm machinery is a means of making these machines highly versatile. It enables the engine to transmit power on and off the tractor.

The course outlined was developed by our adult farmers, P.F.A. chapter, principal, supervisors, local tractor dealers and representatives from the state supervisory staff.

Phenomena Demonstrated
2. Pressure drop caused by friction issues.
3. Effect of using wrong sized pump in systems.
4. Effect of "hammering" in a system.
5. Causes of contamination.

Shop Activities
1. Obtain old pumps and have students assemble and disassemble parts and study their functions.
2. Clean and drain hydraulic system.
3. Replace seals and parts in hydraulic quadrant.

(Concluded on page 211)
INDIVIDUALIZED INSTRUCTION: A MUST IN AGRICULTURAL MECHANICS

Wiley B. Lewis
The Center for Vocational and Technical Education and The Ohio State University Columbus, Ohio

Students interested in production agriculture occupa-
tions must be able to operate, maintain, repair, construct, and/or otherwise use the agricultural mechanics items—
machinery, equipment, structures, tools, and supplies—which they desire. Training in these areas should be accepted as basic to instruction in vocational agriculture programs. In acceptance has resulted in the use of rather formalized departmental curricula in directing the related
instruction. Such a procedure was considered adequate for ensuring that instruction related to specific mechanical items would be accessible to the student in the school while additional instruction and reinforcement could be provided through the field trip and the supervised occupational experi-
ence.

Though instruction provided in this manner was thought to be meeting students' needs, the results of a recent Ohio study reveal that several changes should be made in the agricultural mechanics instructional program. Among the changes suggested, the need for individualising agricultural mechanics instruction was thought to be of foremost importance for several reasons.

Need for Individualized Instruction

First, an analysis of data collected during the course of the study revealed that the number of students who performed the several mechanical activities and the time at which they first performed the activities were highly varied. Thus, students, as has so often been said, have varying needs related to the agricultural mechanics items which were considered in the study.

Second, data collected from selected young and adult farmers showed that varying numbers of these individuals performed the activities being considered. Because of this, their training should be directed to what the individuals need. The result of this would be that other
enter production agriculture occupations will need to be able to perform certain activities, all students will not be able to perform all activities.

Third, reports from Ohio teachers of vocational agri-
ticulture indicated that the field trip and the supervised occupa-
tional experience program did not carry any importance in the agricultural mechanics instruction associated with the production agriculture program. In other words, the super-
vized educational reinforcement and additional instruction which one might have been provided through these types of learning experiences actually was not occurring.

Individualizing Agricultural Mechanics Instruction

The study further revealed that there is a definite need for providing individualized instruction.

Students varied greatly with respect to the kind of agricultural mechanical activities they performed and in the time they first performed the activities.

A first step toward individualizing agricultural mechanics instruction would be to ensure that a student's individual curriculum is established, generally within the confines of the departmental curriculum as shown in Figure 1. This individual curriculum would be based upon the student's physical abilities and the agricultural mechanics activities involved in his/ her proposed occupational area. While such a curriculum would provide a structure within which individual instruction could be provided, a high degree of flexibility should be maintained. To meet the student's needs one might find it necessary to extend the individual curriculum outside the departmental curriculum as represented in Figure 1 and possibly, outside it generally is conceived to be the agricultural mechanics needs of production agriculture workers.

Implemention

To implement the concepts identified above, one must remember that the student's educational progress need not count; what happens to each student enrolled in the program does count. What a teacher is and does remains the determining variable in the educational situation.

Since our society is committed to the significance of individual performance, teachers of vocational agriculture must increasingly individualise their instruction. To do this, teachers should ensure that four essential conditions are established. First, subject matters coverage and skill development must be geared to the boundaries of grade levels and attendance must be made more flexible. This flexibility will permit each student to work at his actual level of accomplishment in each subject matter or skill area and to progress in each area as soon as he masters the prerequisites for the next level of advancement.

Second, since the process of progressive, behaviorally defined objectives need to be established as

Guidelines for setting up a student's program of study. The student's achievement could then be defined by his position along the progression of advancement toward his occupational goal.

Third, a student's progress must be continuously monitored. This teacher in particular that adequate methods and instruments for evaluating each student's abilities and accomplishments are available and used. He must then use the information to plan appropriate procedures to help the student plan his educational program.

Fourth, the teacher must provide each student access to appropriate instructional materials. These materials should be selected to provide the student's assign the teacher in individualising agricultural mechanics instruction as a means toward improving his students' preparation for entering or advancing in production agriculture occupations.

1. Films on hydraulics.
2. Transparency on hydraulics.
3. Textbooks on hydraulics.
4. Drawings of hydraulic systems.
5. Hydraulic pump, valves, hoses, scale, quadrants, etc.
6. Farms tractor with hydraulic systems.
7. Farm machinery by hydraulic system.
8. Smaller transmissions (tractor or car).

Ed. If you desire a more detailed course outline, please contact the author.

Mr. M. H. Smith, principal, Holton High School, and Mr. D. M. Simeck, principal, Holton Public Schools, Holton, Kansas, 0272, in their "Counselling in Vocational Agriculture: An Evaluation of Agriculture" (Thomson, Spalding,

MARCH, 1972

THE AGRICULTURAL EDUCATION MAGAZINE

211
MAKING THE TRANSITION . . .
From Year To Semester Courses

Rapid technological advancement in agricultural production has increased the productivity of farmers to the point where less than 15% of present day farm youth can expect to find gainful employment in production agriculture. Along with this revolution in production agriculture, there has developed an entirely new class of occupations in agricultural business and industry. Agricultural business and industries have problems finding properly prepared personnel to fill their vacancies. Many of these occupations are filled by young men with agricultural training. However, many of these occupations cannot be filled by farm boys, since we are facing a declining farm population. In order to meet these occupational needs we must recruit boys and girls from urban areas with non-farm backgrounds, students who do not live on farms but who can and will take jobs in practice agriculture. Approximately one-half of the students enrolled in vocational agriculture each year at Tate Creek are sophomores, juniors, and seniors, who do not live on a farm and who have had no previous training or experience in production agriculture.

The purpose of the program is to develop understandings in the students, provide a completion of individual study guide units in agribusiness areas and diversify programs in agricultural occupations, thus enabling students to enter the co-operative program and work at existing stations in the agribusiness industry. The program will also help meet the educational requirements for students who are interested in agriculture, but do not have a chance to farm.

W. A. Clawson
Teacher of Agriculture
Tate Creek, Senior High School
Lexington, Kentucky

Robert E. Steffy
Teacher of Agriculture
Marion Center, Pennsylvania

Robert E. Steffy
Teacher of Agriculture
Marion Center, Pennsylvania

NOTHING VENTURED, NOTHING...

Students prepare winter bouquets of grasses and flowers. Their combined efforts produced a profit. Each member shared equally in the patronage refund. Cooperative effort connected to dollars is tangible evidence that the idea will succeed.

The third goal was to encourage creativity through cooperative effort. A variety of items, assorted bouquets, were assembled from x-rayed grasses, weeds and grains. Plastic flowers mounted on hardware clothing provided variety in floral arrangements. Yule logs and Christmas wreaths were made. Place mats were finished. The students began to realize that their creative abilities in demand and had a market value. Pride of accomplishment was evident. Complimentary remarks on the part of the customers and others spurred them on to greater efforts.

The fourth purpose was to provide selflessness experience in marketing the creations. Products were made and sold. Orders were taken and delivered. Salesmanship was practiced when the market was located. The value of the merchandise sold was not very high, but the students realized a valuable learning experience. Production such as this was not the aim of the activity, but this was an educational experience and only a limited time could be allotted to this unit. The fifth objective was to emphasize the use and the appreciation of farmers' cooperatives. The Agribusiness group was familiar with Agway, for they had used it and sold Agway garden. (Concluded on page 215)
Order in our lives is maintained by laws—natural, judicial and spiritual. Nature's law of gravity prevents us from falling off the cliff. The law of another's property is controlled by our country's statutes; and a spiritual law tells us it is wrong to be untruthful.

To these three basic kinds of law—natural, judicial and spiritual—I would add a fourth—a law affecting individual performance. You will come to know some of the more common ones such as Parkinson's Law which says, "Work expands so as to fill the time available for its completion."

Then there's Murphy's Law. If something can go wrong, it will, McGurk has rewritten Murphy's Law to read, "Any improbable event which would create maximum confusion if it did occur...will occur!"

Another one very familiar to all of us is referred to as the Cooperating Teacher's Law for student teachers. It reads, "Nothing is impossible for the one who doesn't have to do it himself."

The law of individual performance I will maintain does come to in many ways. We're all familiar with "You get out of something what you put into it." How about what you sow? Another is "Give to the world the best you have—and the best will come back from what you sowed."

Next let's take a look at the status of the second area identified—FFA. The most obvious indicator here is the decline of FFA membership. Also, our traditional claim to fame, leadership development, is decreasing in effectiveness. Neither opinion is new. On the local, national and international levels, we have some outstanding young men and ladies serving as officers; however, as a group the total membership does not display the leadership skills traditionally characterized with FFA.

The lack of opportunities and areas of interest for the specialized non-farm student, and the disadvantage are other areas sadly deficient. These issues seem to indicate there is need for serious consideration of the program. Our goal must be to reverse the trend of declining returns.

Several needs need to be met in order to reorient and group target, time and effort, to adjust our program to the new concept of career education. This includes utilization of the Core Curriculum, initiation of cooperative programs, selection of vocational areas, specialized courses at the 11th and 12th years, technical programs at the post-secondary levels and career orientation and exploration in the elementary and junior high levels.

The return on this effort will satisfy the goal of career education—a valuable end product—an individual prepared to lead a productive and satisfying working life. Our program vehicle will most likely be redesigned during this decade. Consideration is currently being given to replacing the traditional service area with fifteen occupational clusters prepared by the U.S. Office of Education.

Regardless of whether this change is "the answer," each of us should be concerned about whether we have made the necessary deliberate actions to improve the existing situation in our chapter. We will have to make a decision; in our approach...in our thinking...in our teaching.

The success of the program vehicle in the future—as has been the case in the past—is the individual teacher's willingness to meet the changing needs of agriculture and the student.

Next let's take a look at the status of the second area identified—FFA. The most obvious indicator here is the decline of FFA membership. Also, our traditional claim to fame, leadership development, is decreasing in effectiveness. Neither opinion is new. On the local, national and international levels, we have some outstanding young men and ladies serving as officers; however, as a group the total membership does not display the leadership skills traditionally characterized with FFA.

The lack of opportunities and areas of interest for the specialized non-farm student, and the disadvantage are other areas sadly deficient. These issues seem to indicate there is need for serious consideration of the program. Our goal must be to reverse the trend of declining returns.

Several needs need to be met in order to reorient and group target, time and effort, to adjust our program to the new concept of career education. This includes utilization of the Core Curriculum, initiation of cooperative programs, selection of vocational areas, specialized courses at the 11th and 12th years, technical programs at the post-secondary levels and career orientation and exploration in the elementary and junior high levels.

The return on this effort will satisfy the goal of career education—a valuable end product—an individual prepared to lead a productive and satisfying working life. Our program vehicle will most likely be redesigned during this decade. Consideration is currently being given to replacing the traditional service area with fifteen occupational clusters prepared by the U.S. Office of Education.

Regardless of whether this change is "the answer," each of us should be concerned about whether we have made the necessary deliberate actions to improve the existing situation in our chapter. We will have to make a decision; in our approach...in our thinking...in our teaching.

The success of the program vehicle in the future—as has been the case in the past—is the individual teacher's willingness to meet the changing needs of agriculture and the student.

Next let's take a look at the status of the second area identified—FFA. The most obvious indicator here is the decline of FFA membership. Also, our traditional claim to fame, leadership development, is decreasing in effectiveness. Neither opinion is new. On the local, national and international levels, we have some outstanding young men and ladies serving as officers; however, as a group the total membership does not display the leadership skills traditionally characterized with FFA.

The lack of opportunities and areas of interest for the specialized non-farm student, and the disadvantage are other areas sadly deficient. These issues seem to indicate there is need for serious consideration of the program. Our goal must be to reverse the trend of declining returns.

Several needs need to be met in order to reorient and group target, time and effort, to adjust our program to the new concept of career education. This includes utilization of the Core Curriculum, initiation of cooperative programs, selection of vocational areas, specialized courses at the 11th and 12th years, technical programs at the post-secondary levels and career orientation and exploration in the elementary and junior high levels.

The return on this effort will satisfy the goal of career education—a valuable end product—an individual prepared to lead a productive and satisfying working life. Our program vehicle will most likely be redesigned during this decade. Consideration is currently being given to replacing the traditional service area with fifteen occupational clusters prepared by the U.S. Office of Education.

Regardless of whether this change is "the answer," each of us should be concerned about whether we have made the necessary deliberate actions to improve the existing situation in our chapter. We will have to make a decision; in our approach...in our thinking...in our teaching.

The success of the program vehicle in the future—as has been the case in the past—is the individual teacher's willingness to meet the changing needs of agriculture and the student.
Benny Campbell is a Vocational Agriculture student at Belvedere High School in New Orleans. Benny is receiving on-the-job training through the Cooperative Agriculture Education (CAE) Program. This is an excellent example of cooperation between the public school system and the business community, and the students are supplied with a full-time instructor who is available at any time to answer the questions of the students. The students are also taught the fundamentals of business and industry in which they are employed. Benny answers questions about one of the phases he is responsible for at the Royal Orleans Hotel. One of these phases is from Edenton, North Carolina, and the other is from Sacramento, California. Benny finds one of the most enjoyable duties of his job is answering the many questions asked him about the phases by guests from all over the world. (Photo from J. C. Shimmon, Area Supervisor, Vocational Agriculture.)

Stories in Pictures
by Richard Douglass

SONS FOLLOW IN THEIR FATHER'S FOOTSTEPS — former Superintendents of Agriculture at the Marksville High School in Louisiana, the sons of one of the retired teachers of agriculture, having graduated from the same school, and are currently teaching in the same high school. (Photo from Ivan Baker, Supervisor, Louisiana.)

Theme — CREATING EDUCATION: YOUTH ORGANIZATIONS AS AN INSTRUCTIONAL TOOL