Instructional Technology

The Information Superhighway
The Internet
Interactive Video Networks
Managing Editors
Editor
EDWARD W. OSBORNE: Agricultural Education, 134
Mount Hall, University of Illinois, Urbana, IL 61801
Business Manager
GLEN A. MANNING, 2441, Stennes Rd.,
Mechanicsville, VA 23111

Regional Editors
Eastern Region
DEAN STEPHENS: Cornell University
JACQUELINE W. DIELS: Mississippi State University
Central Region
DAVID LERCH: University of Minnesota
Western Region
SUSAN WIGHTMAN: University of Idaho

Special Editors
International Agriculture
ROBERT MASTERS: Iowa State University
Ag in the Elementary Schools
MARK LESLIE: California Foundation for Agriculture in the Classroom
Tracking Agriculture
MICHAEL GERSTLEY: Fellow High School, CA
SeA Programs
TIM DEMPSEY: Woodside High School, TX
PEA: Agricultural
DAVID SPYDER: Tri-Valley High School, NY
Marketing Your Program
TOM CORE: North Palm High School, FL
Pest Science
STEVE MULLER: Cooper Career Area High School, PA
Research on Teaching
GREGORY MARKWELL: University of Arizona, Tucson, AZ
Book Reviews
RAY FERRIS: University of Georgia, Athens

Managing-Editing Board
Chairman
TOM DUNN: New Mexico State University
Vice Chairman
Roy Rechel, Illinois Department of Education
Secretary
DAVID DURHAM: Iowa State University
Editor
EDWARD W. OSBORNE: University of Illinois
Members
CLEM ANDERSON, Virginia Department of Education
MCCOLIN BARKER, WVU, Morgantown, WV
LARRY COX, US Department of Education (non-voting member)

Advisory Editors
Wayne Buehler, Atlanta Doc. of Education
Richard Cooley, Athens Department of Education
Dennis Dempsey, Woodside High School
Robert Ehrman, Ohio Department of Education
Donald Holbrooke, National PTA Center (non voting member)

Table of Contents
Page
Editorial
Making the Right Choices Ed Osborne 3
Editor-Elect Named 4
Theme Editor's Comments It Begs the Mind...Kerry S. Oddell 5
Theme Articles
Managing Your Classroom Onto the Information Superhighway Tim Murphy 6
The World's Largest Computer Network: The Internet...Kathleen Fleck 9
The Information Highway in Iowa...W. Wade Miller 11
Subject Index for Volume 66 12
Interactive Video Networks in Secondary Schools...Michael E. Swen, Michael I. Ramsay, and Mark Schmidt 15
Upgrade to Humanenetic Technology Erwin Berry 16
Feature Column
ERIC: A Valuable Program Improvement Resource...Wesley E. Backs 18
Other Topics
Center for Agricultural Science and Environmental Education...Don Armstrong & Joseph Councou 19
Money Management: A Financial Planning Curriculum...Timmie Bartholomew & Brian L. Garren 21
How Flexible Are Our Programs?...Jim Wilson 23

ARTICLE SUBMISSION
Articles and photographs should be submitted to the Editor, Regional Editors, or Special Editors. Items to be included for the program should be submitted by March 15 and 90 days prior to the date of issue intended for the article or photograph. All submissions will be acknowledged by the Editor. No material will be returned unless accompanied by a stamped, self-addressed envelope. Articles should be typed, double spaced, and include photographs when appropriate. Two copies of articles should be submitted. Authors will receive five copies of the printed issue plus one set of reprints. Articles in the Magazine may be reproduced without permission.

PUBLICATION INFORMATION
The Agricultural Education Magazine (ISSN 0957-0077) is the monthly professional journal of agricultural education. The journal is published by The Agricultural Education Magazine, Inc., and is related to M & D Printing, Inc., Mechanicsville, VA 23111. Second-class postage paid at Mechanicsville, VA.

POSTMASTER: Send Form 3577 to Glenn A. Anderson, Business Manager, 2441 Stennes Rd., Mechanicsville, VA 23111. Publication No. 757746

August, 1994 Volume 66 Number 2

Making the Right Choices

Life is full of choices. And yes, teaching is full of choices—choices regarding what curriculum materials to use, what courses to offer, what FFA programs to emphasize, and what learning activities to use. Teachers also must decide which types of instructional technology they will use in their teaching. Overhead projectors, videotapes, CD ROM, computer technology, multimedia, satellite television—so many choices. Can you/should you try to use all the types of instructional technology that are available today perhaps? Not yet. I currently serve as a faculty member on a doctoral committee in which the doctoral candi- date developed a very nice hyper text computer program on the identification of woody plants. The program is authored in Toolbook and contains approximately 5,000 digitized color slides of key stages of growth and development for many different species of woody plants. The program has taken countless hours in development and looks extremely profes- sional and appealing. Yet, in a preliminary test this spring, one of the computer program had no effect on students’ grades in the course. Why not? Several theories arise, but one in particular seems plausible. In addition to the computer program, students had five other significant sources of information including the traditional lab discussions, to learn the material. Thus, in the case of the computer, was not really advantageous an achievement from a standpoint—students already had multiple sources of learning that were very effective.

This scenario raises some perplexing ques- tions that can be directed toward instructional technology in general. What are the outcomes/advantages of the technology? Does this technology have significant advantages over other approaches? What are the costs and benefits of the technology? These are tough questions to answer. Perhaps in the above example, achievement was not boosted when using computers, but student interest and motivation may have been enhanced. If so, the cost of the technology may be well worth the investment.

The market is being currently flooded with new technologies. Some of these clearly have the potential to make a positive difference in education, while others are long on flashiness and short on worth. Can new instructional technologies and their thoughtful implementation into our classrooms, yet, we should avoid relatively large cash outlays for new instructional technologies without first being able to clearly identify their potential benefits and uses. And continued use and upgrading of any instruc- tional technology should be based on evidence that its use makes a positive difference in some significant aspect of the educational process. (continued on page 10)

The Agricultural Education Magazine
219 North Second Street
Mechanicsville, VA 23111
Phone: (804) 565-7613
Fax: (804) 567-3952
Email: aemagazine@mechcs.coop
Website: http://www.pecp.com/aemag
Editor-Elect Named

At the 1993 Annual Meeting of the Editing-Management Board of The Agricultural Education Magazine, Dr. Leo H. Riesenberg was appointed Editor-Elect for 1994. Following this one-year term, Dr. Riesenberg will assume a three-year term as Editor.

Dr. Riesenberg is currently Professor and Head of the Department of Agricultural and Extension Education in the College of Agriculture at the University of Idaho.

He has been at the University of Idaho, first in the Department of Agricultural Engineering and then in the Department of Agricultural and Extension Education, since August of 1979. He received his Bachelor of Science degree in Agricultural Education from Iowa State University in 1971. From there, he went to teach secondary and adult vocational horticulture in the Fridley, Minnesota, schools until 1976. During that time, he completed his Master of Arts degree in Agricultral Education at the University of Minnesota. In 1976, he began a term as a teaching associate with Dr. Freeman Bear at the University of Minnesota, and in 1980, completed his Ph.D. in Education.

Dr. Riesenberg grew up on a farm in west central Iowa, but did not have the opportunity to participate in a secondary agriculture program or the related FFA activities. Between his high school graduation in 1962 and his matriculation to Iowa State University in 1968, Dr. Riesenberg worked for various agriculturally related businesses. The opportunity to be in the workforce directly out of high school has given him a unique perspective on the world of work.

Dr. Riesenberg has been awarded the Outstanding Service citation by the National Vocational Teachers Association; the Distinguished Service award by the Idaho Vocational Agriculture Teachers Association; the Administrator of the Year award by the Idaho Agriculture Teachers Association; and the Outstanding Student Award by the Associated Students, University of Idaho. In addition, he has received the Idaho FFA Honorary State Farmer Degree, as well as the Honorary American FFA Degree.

Dr. Riesenberg is looking forward to accepting the position of Editor of The Agricultural Education Magazine. Dr. Riesenberg feels that the magazine should have value to all in the agricultural education profession. He is especially interested in hearing from those professionals who have ideas and suggestions on how to make the magazine more meaningful and pertinent.

Please feel free to contact him with any suggestions and/or concerns. His mailing address is:

Agricultural and Extension Education
224 Morrill Hall
University of Idaho
Moscow, ID 83844-3012

Voice Telephone: (208) 885-6358
Fax: (208) 885-6108
Internet: aed@uidaho.edu

It Boggles the Mind

Wow! Trying to synthesize and encapsulate just the recent advances in instructional technology is mind-boggling. Anyone who knows— and I emphasize the word knows—to keep abreast of information and communication technologies can tell you the challenge is monumental. The exponential nature of information generation has spawned a corresponding revolution in the packaging and distribution of information. Accessing information has become more important than creating it. The challenge for teachers is evaluating the information and incorporating technology into the instructional process.

Instructional technology has become an important tool for educating young people in today’s global society. It has virtually eliminated the barriers of time and space. Worldwide networks now provide almost instantaneous information exchange between people, institutions, organizations and governments. The world truly is getting smaller and smaller every day.

Where Have We Been?

Philosophy, slide and overhead projectors were some early forms of instructional technology used by teachers. They provided alternatives to the traditional lecture, but continued to place the student in a passive learning role. Not very long ago, educators touted the VCR as a revolutionary instructional tool, and shortly after that, microcomputers began to appear in schools and classrooms across the country and around the world. More recently, satellites and satellite dishes have shattered boundaries and provided almost universal access to visual information. Nothing has been the same since. Technology has radically changed society—what we do and how we do it. Schools are no exception.

Where Are We?

We have come a long way in a very short time. Information technology has evolved from a few Microsystems to a powerful, interactive computer network spanning the globe. Today, educators can look at the Internet to keep informed about research, study and teaching, and to connect students and schools across the country and around the world.

This has led to a new way of doing things. It is now possible to view this magazine online, to order books and other materials, and to access resources from around the world. The opportunities for learning are endless, and the potential for developing new and innovative teaching strategies is immense.

This is where we are now. The future looks bright, and the possibilities are endless. The next step is to develop new instructional technology that is student-friendly and easier to use. The key is to develop technology that is easy to use and effective in the classroom.

This is where we are now. The future looks bright, and the possibilities are endless. The next step is to develop new instructional technology that is student-friendly and easier to use. The key is to develop technology that is easy to use and effective in the classroom.

(continued on page 10)
Merging Your Classroom Onto the Information Superhighway

A year ago I was teaching agricultural science at a high school, unaware of the resources available through a link to one of the national computer networks. I had heard other teachers talk about such resources, but I didn’t really pay much attention. I really thought it was just another gadget. For some teachers, with whom I have worked, the newest technological innovation that comes along is suddenly a "must have" item. They spend all their time learning to use some new educational technology, never quite reaching the point where it actually helps them in teaching, then abandon it for the next one, I believe that technology must follow and facilitate the curriculum; simply using technology must not be the goal. The technology must help educators and students reach goals. This article is about one technology that will.

This year, I’ve taken time to learn to use electronic networks, and I wish I had done it much sooner. This is a technology that will enable both educators and students to reach goals. It will allow you to do better some things you’re doing now, and it makes possible some things you simply wouldn’t do otherwise.

Why Go On-line?

Why should you put your department online? I’ve discovered three good reasons, and one reason which may not be good, but is important. First, you will gain access to almost unimaginable amounts of information. As agriculture teachers, we have already said that we want students to learn practical skills useful in the real world. Yet, too often, we attempt to do this through the use of textbooks and teaching aids which are obsolete, but hopefully outdated. Imagine using new curriculum materials, "not textbooks, but authentic information in its customary form," but not what someone else thinks you should know, but what you choose to find out" (Lenke, 1993, p. 7). Currently you may have received literally thousands of files, from the latest USDA research to Bill Clinton’s daily schedule, and the list of information available is growing so rapidly it takes a computer to keep up with it. These materials will be delivered to you instantly, and in many cases, free.

Secondly, you will be able to communicate efficiently, using text, graphics, and sound, with people who share your interests at distant locations. "Agricultural professionals will no longer be able to rely solely on bulletin boards, journals, and textbooks to solve problems. Rather, they will need to be able to draw from a larger resource pool, communicate with specialists, share resources and transmit information (Gunnell, 1993, p. 36). Electronic networks will help you accomplish all of these tasks, quickly and efficiently.

Thirdly, your students will love it. "The computer, in short, can become a tool students use to synthesize their own ideas" (Barrett, 1993, p. 52). "Today's students have already diversified... from the development of learning, then abandon it for the next one, I believe that technology must follow and facilitate the curriculum; simply using technology must not be the goal. The technology must help educators and students reach goals. This article is about one technology that will.

This year, I’ve taken time to learn to use electronic networks, and I wish I had done it much sooner. This is a technology that will enable both educators and students to reach goals. It will allow you to do better some things you’re doing now, and it makes possible some things you simply wouldn’t do otherwise.

Why Go On-line?

Why should you put your department online? I’ve discovered three good reasons, and one reason which may not be good, but is important. First, you will gain access to almost unimaginable amounts of information. As agriculture teachers, we have already said that we want students to learn practical skills useful in the real world. Yet, too often, we attempt to do this through the use of textbooks and teaching aids which are obsolete, but hopefully outdated. Imagine using new curriculum materials, "not textbooks, but authentic information in its customary form," but not what someone else thinks you should know, but what you choose to find out" (Lenke, 1993, p. 7). Currently you may have received literally thousands of files, from the latest USDA research to Bill Clinton’s daily schedule, and the list of information available is growing so rapidly it takes a computer to keep up with it. These materials will be delivered to you instantly, and in many cases, free.

Secondly, you will be able to communicate efficiently, using text, graphics, and sound, with people who share your interests at distant locations. "Agricultural professionals will no longer be able to rely solely on bulletin boards, journals, and textbooks to solve problems. Rather, they will need to be able to draw from a larger resource pool, communicate with specialists, share resources and transmit information (Gunnell, 1993, p. 36). Electronic networks will help you accomplish all of these tasks, quickly and efficiently.

Thirdly, your students will love it. "The computer, in short, can become a tool students use to synthesize their own ideas" (Barrett, 1993, p. 52). "Today's students have already diversified... from the development of learning, then abandon it for the next one, I believe that technology must follow and facilitate the curriculum; simply using technology must not be the goal. The technology must help educators and students reach goals. This article is about one technology that will.

This year, I’ve taken time to learn to use electronic networks, and I wish I had done it much sooner. This is a technology that will enable both educators and students to reach goals. It will allow you to do better some things you’re doing now, and it makes possible some things you simply wouldn’t do otherwise.

Why Go On-line?

Why should you put your department online? I’ve discovered three good reasons, and one reason which may not be good, but is important. First, you will gain access to almost unimaginable amounts of information. As agriculture teachers, we have already said that we want students to learn practical skills useful in the real world. Yet, too often, we attempt to do this through the use of textbooks and teaching aids which are obsolete, but hopefully outdated. Imagine using new curriculum materials, "not textbooks, but authentic information in its customary form," but not what someone else thinks you should know, but what you choose to find out" (Lenke, 1993, p. 7). Currently you may have received literally thousands of files, from the latest USDA research to Bill Clinton’s daily schedule, and the list of information available is growing so rapidly it takes a computer to keep up with it. These materials will be delivered to you instantly, and in many cases, free.

Secondly, you will be able to communicate efficiently, using text, graphics, and sound, with people who share your interests at distant locations. "Agricultural professionals will no longer be able to rely solely on bulletin boards, journals, and textbooks to solve problems. Rather, they will need to be able to draw from a larger resource pool, communicate with specialists, share resources and transmit information (Gunnell, 1993, p. 36). Electronic networks will help you accomplish all of these tasks, quickly and efficiently.

Thirdly, your students will love it. "The computer, in short, can become a tool students use to synthesize their own ideas" (Barrett, 1993, p. 52). "Today's students have already diversified... from the development of learning, then abandon it for the next one, I believe that technology must follow and facilitate the curriculum; simply using technology must not be the goal. The technology must help educator...
large reference library with a news section that includes the Associated Press wire service and clippings from over 60 newspapers in the U.S. and dozens more overseas.

Two words of caution about CompuServe. First, this network caters mostly to the comput- er literate (read "geeks"), and it is somewhat harder to use effectively than the others. This can be partially overcome by dialing up and typing GO CSSOFT to get a copy of the CompuServe Information Manager, a software package that makes moving around in this huge network somewhat easier.

Secondly, charges can add up a hurry on CompuServe. The basic service is $8.95 a month for unlimited on-line time, with the first minute being free for new members. However, this provides access with access to only 47 of the available services. To gain access to the rest you add $9.60 per hour for $600 or 14.4 baud modems and above. On top of that, some users may add search and download fees, which CompuServe charges on behalf of the other online services that it carries. Searching for a file using the Dial Out network via CompuServe will cost around $4 per search and $3 to download the document. CompuServe remind user of how much they’ve spent. So the bill won’t be a shock unless the person paying the bill is not the one using the service, which could be a problem in a classroom setting.

Not as fancy or as friendly as either Prodigy or America Online, and not as large as CompuServe, Delphi is a better deal in many cases. Purchased in November 1993 by Rupert Murdoch’s News Corporation and based in Cambridge, Massachusetts, Delphi (1-800-695-4005) offers a “2020 20 plan, 20 hours of use per month with additional hours billed at $1.80 each. Where the others look more like video games, Delphi currently requires a little more patience to learn to use. The company has expressed plans to upgrade to a graphical user interface (GUI) during the second quarter of 1994, which should make the service much more friendly. To recommend it, Delphi has something none of the others offer. For an extra $3 a month, users can gain full access to Internet.

The Next Step

If you really want to adopt and use this technology, how should you go about it? In a recent study, researchers (Albertson, Harper, & Shinn, 1995) found that at least three factors will increase the likelihood of your successful adoption of this technology. First, plan for it. You are far more likely to adopt and implement a technology if you develop a plan, either written or oral, and share that plan with others. Then identify suppliers of the equipment you will need. Develop a relationship with these suppliers. They can offer technical expertise and assistance that you will desperately need as you

begin using the technology. Being able to identify an average of three suppliers greatly increases your odds of successfully adopting. Finally, seek training in this area. The best training available is as near as your computer. It may sound like a cheat, but the best information on how to use the networks is on the networks, and we all know that the best way to learn is by doing, not just to go it alone.

Eventually, I think you are going to want to get off the bus, move away from using one of the slick and easy commercial services, and hitch a ride on the “network of all networks,” the Internet. Kathleen Fleck, in her article elsewhere in this issue, discusses some of the services available on this network of networks.

For my teaching partner and me, summer was always the time to explore and implement new ideas. Throughout the school year we would keep a list of all the really neat ideas we’d seen all year. Then in the summer, when we weren’t teaching or composing the lab walls or putting a new cover on the greenhouse, we’d buy the equipment and learn to use it before the students returned. This idea of connecting to a network, and eventually getting on-line on the Internet on my list for this summer; I hope you’ll put it on yours.

When you get on Internet, drop me a note at <kahm5754@tamuvm1.tamu.edu> I’ll be waiting to hear from you.

References


The World’s Largest Computer Network: The Internet

It’s on the nightly news. It’s talked about in schools and universities across the country and around the world. The Internet, a computer-based communications network, began about 20 years ago as a United States Defense Department project and has since expanded into a worldwide information system. Known as the network of all networks, the Internet is made up of various federal, regional, and campus networks, and a growing number of foreign networks as well. It allows people from around the world to communicate with each other via the computer in "real time." Each user connected with the Internet system needs a computer address similar to that of a postal address. Instead of reading person, street, city, and zip code, the computer address reads user@some.where.domain. If a message is simply being sent to a computer and not a specific user, the address would simply read some.where.domain.

The boundaries of the Internet are limitless. A connection can be private, commercial or even international. Once connected, however, many opportunities and special tools are at the disposal of the user. Bulletin boards, electronic mail, and file transfer are just a few. But to take full advantage of the Internet, one must have a Transmission Control Protocol/Internet Protocol (TCP/IP) style connection. This type of connection is available through colleges and universities or from commercial services offering Internet access, as those identified by Tim Murphy in his article, "Merging Your Classroom Onto the Information Superhighway."

The Internet is home to many cyber tools, each with a specific task assigned to them (e.g., finding people, software, or data). The Internet Gopher points users in the right direction by allowing them to search the system for specific resources. By selecting a topic from the Gopher menu, one is commanding the system to retrieve any information on file regarding the specified topic. This allows the user to gather information without having to request a specific Internet (Information Service Provider or Information Sources), another tool, is a way to search through indexed material to find information about articles based on their content. Another tool, the World Wide Web, is a hyper-text-based system that helps the user access different resources on the Internet together.

Since its development, the Internet has become a resource for teaching, research, and extension information concerning agriculture and the environmental sciences. There is an Internet connection containing information from the National Agricultural Library that includes five years of on-line information, including references on nutrition, agricultural economics, and parasitology, as well as current publications and other resources. Summaries from the USDA can also be obtained through the Internet system. These reports are updated monthly and contain agricultural and economic research. This resource can be reached through WAIS indre-lhre.

PENN PAGES is an excellent service provided by the Pennsylvania State University. It contains information on all aspects of agriculture, family, living and rural development. Access to PENN PAGES is gained by telneting to pps.psu.edu. Many other colleges and universities have established agricultural and environmental databases and bulletin boards. Just a small sample of these is listed in the following table.

<table>
<thead>
<tr>
<th>Name</th>
<th>Agency Access Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENET</td>
<td>Cornell University Extension Telnet</td>
</tr>
<tr>
<td>CEFR</td>
<td>Purdue University  Telnet</td>
</tr>
<tr>
<td>CUFAN</td>
<td>Clemson University  Telnet</td>
</tr>
<tr>
<td>QUERRI</td>
<td>Database of Extension Resources Telnet</td>
</tr>
</tbody>
</table>
It Boggles the Mind (continued from page 3)

What Must We Do?

Realizing the potential of information and communication technology for improving teaching and learning will require training and retraining teachers in the pedagogical applications of technology. A basic understanding of the technology is not sufficient. Teachers must use interactive instructional technologies to construct simulations, build models, solve problems, promote inquiry, and foster discovery. Teachers and teacher educators must meet the challenge of creating new and effective ways to stay current in both the knowledge and application of technology in education. Administrators and citizenry must plan for the changing nature of technology. Financial resources and the technical support necessary to keep the equipment in schools up-to-date and in proper working order must be available.

States need to continue the development of networks like those in Iowa and North Dakota. Promotion and enhancement of distance education should occur. Teachers need to be proactive in the acquisition and adoption of instructional technology. Colleges and universities need to provide in-service opportunities and educate prospective agriculture and natural resource professionals in the use of instructional and information technology.

"Learning to Do" and "Doing to Learn" are just as important today with information technology as they have always been in agricultural education. Let's not forget that knowledge empowers people. Using instructional technology empowers the teacher and student and provides for the development of skills that will be essential for life in a global information society.

Making the Right . . .

(continued from page 5)

My point in all this is simply to suggest that before we invest in new instructional technologies, we need clear ideas as to (1) how that technology will be used to support our educational efforts and (2) why using that technology will be better than what we are currently doing. Just because a technology is available or everyone seems to have it is not enough. We must consider how it will help us improve our teaching and follow an implementation strategy that allows the instructional technology to achieve the highest potential for improving teaching and learning.

The Information Highway in Iowa

Education in the United States is rapidly changing, experiencing a sea change in how education is either succeeding or failing to serve the citizenry. The federal government and the states are responding to criticisms with new and innovative approaches to improve the quality of education. Vocational and technical education is a major part of this reform movement. Tech Prep, workplace readiness, integration of academics, and school-to-work transitions are just a few of the new reforms being proposed and tested in the nation's schools. Delivery systems are also being examined and implemented. Telecommunications is considered to be one vehicle for delivering quality education.

In the 1980s, Senator Edward Kennedy made the following statement: "The economic battles of tomorrow are being fought in the classrooms of today, and the news from the front is not good." He made this statement in connection with a proposal legislation creating the Star Schools Program. The legislation was passed and the Star Schools Program began in 1987. Its goal was "to encourage improved instruction in mathematics, science, foreign languages, literacy skills, and vocational education for underserved populations through the use of telecommunication networks. Several Star Schools projects have been funded across the country. Many of the projects have used communications satellites to deliver courses to large numbers of students located in dozens of cities and states.

On October 1, 1992, a Star Schools grant was awarded to Iowa to demonstrate a different type of distance education. Iowa's project is demonstrating a distance education system that uses a statewide, two-way, full motion, interactive, fiber optic telecommunications network. The Star Schools project is called Iowa Distance Education Alliance (IDEA). It uses Iowa's new fiber optic network known as Iowa Communications Network (ICN). The ICN first became operative in the fall of 1993. There is at least one specially-equipped classroom in each of Iowa's 99 counties. The ICN links colleges, universities, and secondary schools throughout the state and is funded by state and local funds.

IDEA is a collaborative effort of teachers and administrators from local school districts, the Iowa Department of Education, Iowa Public Television, community colleges, public and independent colleges/universities, and professional organizations. Newspapers and magazines carry numerous stories on how education is either succeeding or failing to serve the citizenry. The federal government and the states are responding to criticisms with new and innovative approaches to improve the quality of education. Vocational and technical education is a major part of this reform movement. Tech Prep, workplace readiness, integration of academics, and school-to-work transitions are just a few of the new reforms being proposed and tested in the nation's schools. Delivery systems are also being examined and implemented. Telecommunications is considered to be one vehicle for delivering quality education.

At the workshop teachers learned about interactive distance education, the fiber optic network, and the goals of the Star Schools project. They were provided experiences in teaching over a simulated network between two classrooms in the same building. Finally, they were asked if this type of distance education could be of value in implementing vocational curriculum reform in Iowa.

An important question had to be addressed before some would be willing to use the network. Will interactive distance education replace a teacher when two or more schools share a course? In Iowa, telecommunications cannot be the sole means of delivering a vocational education program. It can be used to offer any course, provided it is not the sole means for student/teacher instructional interaction. One solution is for each school to go to each site on a scheduled basis. The number of schools sharing a course is usually kept to three or less.

Once that question was answered, teachers started to see the possibilities. Following are some of the ideas they listed and are trying this year. The ICN can be used to:

- Offer advanced or specialized courses in schools that do not have sufficient enrollment to warrant offering the course in one school. Examples in agriculture could include natural resources, environmental sciences, aquaculture, and horticulture.
- Allow two or more teachers located in different schools to coordinate and share a common set of courses originating from each school. Each teacher can take responsibility for teaching selected courses or they can work together to team-teach or turn-teach the same course.
- One type of course often mentioned for this type of instruction is core vocational

(continued on page 17)
Subject Index
Volume 66

Ag Ed in the Elementary Schools by Clair Rundlett, Pam Monson, and Mark P. Linder

Book Reviews

by Kay T. Thorne

August

Decision and Induction: The New Financial Records and Management Information Curriculum

by Dennis & Dollar

March

Developing Money Management Skills in Youth Through Agricultural Careers by Cathy F. Brown and Donald Franklin

March


March

From the Bottom: Woman in the Classroom by Joan Higginbotham, Mary Smith, and Gail Sanburn

March

GAPAG and the Way We Do Business by Tom Baughman, John Goodfriend, Donald D. Bryson, and Paula Wright

March

It’s Up to You by Brenda Smith and Joel Lambrecht

March

The Bonus Line by Paul Wright

March

What Will Change and Why? by Joe Riley and Joe Rehbein

March

Distance Education

The Next Best Thing: Bringing Them by Bill M. Wiberg

February

Evolution of a Teacher’s Perspective to Back Seat driving

February

Incentives by Thursday and Delivering Agricultural Distance Education by Gary Jackson

February

Preparing a Course for the TV Classroom by Lilie Newman

February

Taking the Distance Out of Distance Education by Greg Miller and Jeff DeLay

February

Testing the Fear of Two-Way Inactive Video by Laura Snyder Smith and Betty Lee Truss

February

The Need for Interaction in Agriculture in the Distance via Satellite by Bonnie Carson and Jane E. Thompson

February

Using the Ag Ed Network by Bill Paul

February

Tribalists

A Long Way to Go by Ed Odorbe

June

Agriculture Education and Cooperative Extension: Troubling Up? by Jeanne O’Hare

May

Administration and Implications: The Keys to Teacher Pay by Ed Odorbe

January

Colin’s and Traditions by Ed Odorbe

February

Backstretching Our Nickle by Ed Odorbe

February

Beats for Them? by Ed Odorbe

March

Setting Targets for the Program by Ed Odorbe

July

Steering the Educational Value of Your Land Laboratory by Ed Odorbe

August

Teacher Behavior and Methods That Make a Difference by Ed Odorbe

November

Teaching: Words Worth Hearing by Ed Odorbe

September

The Survival of the Fittest by Ed Odorbe

December

When Students Are Wrong by Ed Odorbe

August

Effective Teaching

Calculating Happiness: A Smarter Learning Activity by Daniel J. Smith

September

Effective Teaching in Agricultural Mechanics Laboratories by John Silverman

November

Effective Teaching of Agriculture through Cooperative and Resource Sharing by Linda Wher

November

Effective Teaching: What Is It? by Vernon D. Edge

November

Going the Extra Mile by Michael L. Gunston

November

Increasing Teaching Effectiveness by Increasing Higher Order Thinking by Sam A. Wensley

November

Knowing the Students and the Subject Matter by James R. White

November

Knowing of Student Learning Stages and Effective Teaching by David E. Cox and Brenda Zavala

November

Research in Teaching by George Wadell

September

Teaching Computer Concepts by Joe Rehbein

September

The Challenge of Motivation by Martha Rogers

September

Using Facilities to Assess Student Performance by Robert R. Hans and James L. Henderson

March

FPA Advancement

In Our Sights by Royce Schroeder

December

Leadership Development and the FPA Advocate by Allen C. Churches and Matt Byler

March

International Agribusiness by Robert A. Martin

August, January

Land Laboratory

Dreams Becoming Reality: The (New) School Farm Project by Michael Albers and Thomas Jacobson

April

Pross Farms to School: Regenerating Some City Resources by Kimberly Smith-Wong and Jeff Reber

April

School to Farm: School to Farm by Jeffrey L. Scherrer

April

Small Scale Land Laboratories by Martin W. Muth

April

RMI Management for Land Laboratory by Martin R. Muth

April

Small Scale Laboratories by Kevin Parker

April

The Ag Referral Service by John Fienholtz and Joseph F. Engels

April

Using a Non-Traditional Greenhouse to Enhance Lab Instruction by Betsy M. Enderby

April

With a Little Inspiration by David White

April

Marketing Your Program

by Joe Curry

March

Motivating Students

Don’t Tell Me: Teach Me by Samuel C. Carter and Wesley Longby

August

How Can I Help My Child Get Through School? by Nancy A. Gandhi

August

How Do You Say “I Don’t Know” and Not Feel Guilty? by Christine D. Houston

August

Student Teaching: A Survival Guide by Ralph D. Caffey, Jr.

August

The “T” in Motivation by Robert A. Martin

August

The Basics of Motivation by James L. Hamilton

August

The Challenge in Lead Motivates Non-Traditional Students by Jim A. Hawn and Dave Krueger

March

Strengthening Programs

A "R" O.E. Guide to Strengthening Programs by Linda Sherry

July

A Nationwide Alliance for Strengthening Adult Education by Carol A. Churchill and Rodney Shell

July

Agribusiness in the 1980s: The Sky is the Limit by Stephen J. Jackson

November

Begin the Right to Move: A Strategy for Implementing Agricultural Literacy Programs by Barry Ford

December

Stimulating, Strengths-Based Education and Tech Prep by David Wadell, David A. Loer, and Glen Reed

July

Developing Relationships with Agricultural Businesses and High Schools by Terry J. Bocky

March

Community Awareness Programs: A Role for Agriculture Teachers by Mary Beth Reelings, Roberts Keaton, and Edgar Puller

October

Educating Small Farmers With an Outdoor Program by Gary L. Ford

September

Implementing a Career Education Building Blocks for the 21st Century by Merle S. Johnson

July

Honor Education: A Novel Concept in Agricultural Education by Margaret J. Johnson

November

Reaching the Learning Environment by Van Waddler

November

Science Facts from Bioteck by Melvin R. Black

July

Strengthening Programs—A Priority for All by Robert A. Martin

July

Strengthening Programs through an Expanded Model for SAE by Gary Moore and Jim Lawrence

July

Strengthening Programs Through Problem Solving by Jan Eide

September

The Senior Project by N.L. McCleskey and Robert M. Torrey

September

Using Extrinsic to Strengthen Programs by N.L. McCleskey and Robert M. Torrey

September

Supporting Professional Development

Resources for the Agricultural Science: Role for Leaders by Gregtfield D. Lewis

June

Managing Diversity: An Ongoing Process by Margaret A. Lakin

June

Professional Roles in Supporting Diversity in Teaching, Research, and University Service by Cindy Parker Fossum

June

Reflections on the Need for Diversity: Deagregation vs. Integration by Margaret A. Lakin

June

Supporting Diversity at the Local Level: A Perspective from Teachers by Melinda E. Royster and Marcus Mayfield

(continued on page 22)

AUGUST, 1994
THE AGRICULTURAL EDUCATION MAGAZINE
Interactive Video Networks In Secondary Schools

The North Dakota Interactive Video Network (IVN) allows people separated by great distances to see and talk to each other. Concerts, meetings, and seminars can all be held by using the advances in communications technology. North Dakota was one of the first states to create a system that allows multiple video interactive networking which connects two or more sites. The North Dakota IVN was the first in a long-range plan to connect all corners of the state through contemporary communications technology. The medium is linked with a computer network to all state colleges/university campuses, many secondary school campuses, and the state capital.

The current coverage point-to-point distance is about 420 miles (Wahpeton to Williston). This IVN System is a digital system which uses codes to transmit two-way audio and video over leased telephone lines. With this technology and availability, people don’t have to travel great distances to start or continue their education.

A full-time job, a husband, and two children didn’t allow one individual much time for travel to expand her two-year degree in medical technology into a four-year degree. Then she heard about the Interactive Video Network. Using IVN and correspondence courses, she earned a diploma from the University of North Dakota without having to move from her community or commute several hours miles to her campus.

Several high school students who are from remote schools and are enrolled in an independent study course, have learned about agricultural science and global warming by accessing information from libraries all over the country via telecommunications. In Wahpeton, Mark Schmit, a cooperative economics teacher, taught a hands-on agriculture management course daily to two schools and didn’t have to leave his own school building. This allowed students in other school districts to take advantage of agriculture courses which were not being offered at their home schools.

Turtle Lake Moritz High School agriscience instructor Tim Aichele is another IVN advocate. Tim teaches each term on the IVN system to other schools in his community who do not have agriculture programs. Thus, in North Dakota, we are exposing many more students to agriscience courses. This has resulted in increased enrollment in agriculture courses, allowing students in small remote schools the opportunity to learn about agriculture, and to increase the effectiveness of our teachers.

The one thing IVN has not done is eliminate teachers. In fact, it has increased the joint collaboration of educational programs for all students in North Dakota. Because of IVN, many students are able to receive courses they may not have been able to attend. Also it has allowed schools to remain open or avoid combining into consortiums. The state includes 14 regional IVN sites from which any secondary school consortium can access courses being offered via the IVN system. There are also several additional IVN consortiums currently in developmental stages.

In the past few years, several agriscience instructors have enrolled in a master’s degree program offered entirely through classes over the North Dakota Interactive Video Network system. Many of the instructors do not leave their original school buildings; they walk down the hall to the IVN classroom to attend class. Actively participate in class discussions, are part of cooperative work groups, and become part of group interactions, taught a hands-on agriculture management course daily to two schools and didn’t have to leave his own school building. This allowed students in other school districts to take advantage of agriculture courses which were not being offered at their home schools.

The Turtle Lake Moritz High School agriscience instructor Tim Aichele is another IVN advocate. Tim teaches each term on the IVN system to other schools in his community who do not have agriculture programs. Thus, in North Dakota, we are exposing many more students to agriscience courses. This has resulted in increased enrollment in agriculture courses, allowing students in small remote schools the opportunity to learn about agriculture, and to increase the effectiveness of our teachers.

The one thing IVN has not done is eliminate teachers. In fact, it has increased the joint collaboration of educational programs for all students in North Dakota. Because of IVN, many students are able to receive courses they may not have been able to attend. Also it has allowed schools to remain open or avoid combining into consortiums. The state includes 14 regional IVN sites from which any secondary school consortium can access courses being offered via the IVN system. There are also several additional IVN consortiums currently in developmental stages.

In the past few years, several agriscience instructors have enrolled in a master’s degree program offered entirely through classes over the North Dakota Interactive Video Network system. Many of the instructors do not leave their original school buildings; they walk down the hall to the IVN classroom to attend class. Actively participate in class discussions, are part of cooperative work groups, and become part of group interactions, taught a hands-on agriculture management course daily to two schools and didn’t have to leave his own school building. This allowed students in other school districts to take advantage of agriculture courses which were not being offered at their home schools.

The Turtle Lake Moritz High School agriscience instructor Tim Aichele is another IVN advocate. Tim teaches each term on the IVN system to other schools in his community who do not have agriculture programs. Thus, in North Dakota, we are exposing many more students to agriscience courses. This has resulted in increased enrollment in agriculture courses, allowing students in small remote schools the opportunity to learn about agriculture, and to increase the effectiveness of our teachers.

The one thing IVN has not done is eliminate teachers. In fact, it has increased the joint collaboration of educational programs for all students in North Dakota. Because of IVN, many students are able to receive courses they may not have been able to attend. Also it has allowed schools to remain open or avoid combining into consortiums. The state includes 14 regional IVN sites from which any secondary school consortium can access courses being offered via the IVN system. There are also several additional IVN consortiums currently in developmental stages.

In the past few years, several agriscience instructors have enrolled in a master’s degree program offered entirely through classes over the North Dakota Interactive Video Network system. Many of the instructors do not leave their original school buildings; they walk down the hall to the IVN classroom to attend class. Actively participate in class discussions, are part of cooperative work groups, and become part of group interactions, taught a hands-on agriculture management course daily to two schools and didn’t have to leave his own school building. This allowed students in other school districts to take advantage of agriculture courses which were not being offered at their home schools.

The Turtle Lake Moritz High School agriscience instructor Tim Aichele is another IVN advocate. Tim teaches each term on the IVN system to other schools in his community who do not have agriculture programs. Thus, in North Dakota, we are exposing many more students to agriscience courses. This has resulted in increased enrollment in agriculture courses, allowing students in small remote schools the opportunity to learn about agriculture, and to increase the effectiveness of our teachers.

The one thing IVN has not done is eliminate teachers. In fact, it has increased the joint collaboration of educational programs for all students in North Dakota. Because of IVN, many students are able to receive courses they may not have been able to attend. Also it has allowed schools to remain open or avoid combining into consortiums. The state includes 14 regional IVN sites from which any secondary school consortium can access courses being offered via the IVN system. There are also several additional IVN consortiums currently in developmental stages.

In the past few years, several agriscience instructors have enrolled in a master’s degree program offered entirely through classes over the North Dakota Interactive Video Network system. Many of the instructors do not leave their original school buildings; they walk down the hall to the IVN classroom to attend class. Actively participate in class discussions, are part of cooperative work groups, and become part of group interactions, taught a hands-on agriculture management course daily to two schools and didn’t have to leave his own school building. This allowed students in other school districts to take advantage of agriculture courses which were not being offered at their home schools.

The Turtle Lake Moritz High School agriscience instructor Tim Aichele is another IVN advocate. Tim teaches each term on the IVN system to other schools in his community who do not have agriculture programs. Thus, in North Dakota, we are exposing many more students to agriscience courses. This has resulted in increased enrollment in agriculture courses, allowing students in small remote schools the opportunity to learn about agriculture, and to increase the effectiveness of our teachers.

The one thing IVN has not done is eliminate teachers. In fact, it has increased the joint collaboration of educational programs for all students in North Dakota. Because of IVN, many students are able to receive courses they may not have been able to attend. Also it has allowed schools to remain open or avoid combining into consortiums. The state includes 14 regional IVN sites from which any secondary school consortium can access courses being offered via the IVN system. There are also several additional IVN consortiums currently in developmental stages.

In the past few years, several agriscience instructors have enrolled in a master’s degree program offered entirely through classes over the North Dakota Interactive Video Network system. Many of the instructors do not leave their original school buildings; they walk down the hall to the IVN classroom to attend class. Actively participate in class discussions, are part of cooperative work groups, and become part of group interactions, taught a hands-on agriculture management course daily to two schools and didn’t have to leave his own school building. This allowed students in other school districts to take advantage of agriculture courses which were not being offered at their home schools.

The Turtle Lake Moritz High School agriscience instructor Tim Aichele is another IVN advocate. Tim teaches each term on the IVN system to other schools in his community who do not have agriculture programs. Thus, in North Dakota, we are exposing many more students to agriscience courses. This has resulted in increased enrollment in agriculture courses, allowing students in small remote schools the opportunity to learn about agriculture, and to increase the effectiveness of our teachers.

The one thing IVN has not done is eliminate teachers. In fact, it has increased the joint collaboration of educational programs for all students in North Dakota. Because of IVN, many students are able to receive courses they may not have been able to attend. Also it has allowed schools to remain open or avoid combining into consortiums. The state includes 14 regional IVN sites from which any secondary school consortium can access courses being offered via the IVN system. There are also several additional IVN consortiums currently in developmental stages.

In the past few years, several agriscience instructors have enrolled in a master’s degree program offered entirely through classes over the North Dakota Interactive Video Network system. Many of the instructors do not leave their original school buildings; they walk down the hall to the IVN classroom to attend class. Actively participate in class discussions, are part of cooperative work groups, and become part of group interactions, taught a hands-on agriculture management course daily to two schools and didn’t have to leave his own school building. This allowed students in other school districts to take advantage of agriculture courses which were not being offered at their home schools.

The Turtle Lake Moritz High School agriscience instructor Tim Aichele is another IVN advocate. Tim teaches each term on the IVN system to other schools in his community who do not have agriculture programs. Thus, in North Dakota, we are exposing many more students to agriscience courses. This has resulted in increased enrollment in agriculture courses, allowing students in small remote schools the opportunity to learn about agriculture, and to increase the effectiveness of our teachers.
Upgrade to Humancentric Technology

By Edwin Berry
Mr. Berry is an agriculture teacher at St. Mary's High School, St. Mary's, West Virginia.

The simplicity of graphic environments in operating systems has brought about an increased use of computers at home, in business, and in school systems. New computer systems have caused changes in hardware configurations and software use. There are many more decisions schools must make today pertaining to memory, RAM, and who to purchase a new computer from. Software can require from 1 to 4 MB of RAM and may require additional cards in the CPU to run efficiently. But after the initial purchase, computers are more useful and humancentric today than ever before.

In the past we expected high school agriculture students to memorize DOS commands and work through tedious feed formulation software. At best, young men and women were keeping financial records, accessing data banks, manipulating databases, and working with FFA software with IBM 8088 machines or the early Apple computers. And even though these machines of the 1980s are still compatible for many (by the way, we all use it, it is someone else's responsibility to replace our students' today's technology. Why not the agriculture department? In fact, more and more families aren't relying on public education to keep them on the cutting edge; they have the technology at home.

With the advent of CD-ROM, it becomes increasingly important for agriculture students to use the resources at their fingertips. At St. Mary's High School, being faced with tightening budgets and high prices of major modern systems, the advisory committee sold the community on the needs of the local agriculture department and raised enough money through businesses, industry, and civic groups to purchase a 486 machine with a CD ROM, PAX, modem, hard drive, speakers, sound and video cards, and software. We then went after state and county vocational funds and faculty senate money to purchase an ink jet printer and more software. Though the amounts we received from each source was small, the initial investment was in excess of $2,500, which I consider small enough change compared to the dividends this kind of technology returns. Believe it or not, a portion of the money was encumbered last year from allocations that teachers didn't spend.

When administrators are considering funding, requests that are submitted in advance and apply to many individuals (youth and adults) surely will receive serious consideration. New technologies in schools bring about great public relations for agriculture students. We may not be in the fast lane of the information superhighway, but St. Mary's High School agriculture students have access to the latest that the Pecos County School System has to offer. On any given day, youth in the agriculture department will be obtaining current market prices for their hydroponic produce from Penn Pages, keeping records on the school farm with a spreadsheet application, recording fundraising data using a database, updating the FFA treasury records, completing FFA award applications, accessing curriculum by downloading information via modem, or fixing information to other FFA chapters. In an unstructured environment, students can range from the mechanical tool skills to hydroponic greenhouses and to the computers to perform self-paced activities that apply to their SRAI or agricultural interests. Though many curriculums in a school can expect students to this type of technology, who is better poised to apply it to their lives than the agriculture department? There is currently a demand for semester courses that apply computer technology in a more in-depth curriculum than is now being offered.

Though it would be nice to have a room full of Pentium machines, the reality of that happening in my classroom is remote. Our support is good, but not that good. While I chip away at the wants and needs of the agriculture sector of our school, we make do with the old AT, XT, and PC2 machines to which we have access. They are better than nothing and perform adequately on much of the software we have, including WordPerfect and QuattroPro (DOS applications).

I have been fortunate enough to be involved with the newly established Technology Committee at my school this year. The committee consists of teachers, administrators, men and women from local businesses and industry, parents, and students. The group has impressed upon the local Board of Education that technology must be budgeted and updated annually, and professional commitment must be matched by financial commitment for all areas of education, not just agricultural education (I keep reminding myself).

This summer I will be involved in a workshop that will teach the integration of video later disc players into classroom presentations. Since this type of technology is relatively new, that State Department of Education is sweeping the pot by supplying each school system with a video disc player and $1,000 worth of software—another example of why it's important to jump off that bandwagon and get in the lead! Additional technological goals of the St. Mary's High School Agriculture Department include: online computer networks, notebook computers for when we are on the road, and increased use of satellite technology.

As educators, we need to guard against the common technology phobia among our peers. In the humancentric technology, our students sometimes may be our mentors. I recommend that teachers attend as many seminars and in-services as possible. This is an important way to upgrade their personal RAM and MHz. Subscribing to computer magazines and upgrading hardware and software whenever possible will help us send students out into the world a little better prepared than their competitors. Like technology, educational funding and availability of grants continue to change; therefore, teachers also need to stay abreast of changing policies and guidelines.

As we all know, the computer does not replace professionals. It is a tool, and a valuable one at that. Let's make it so. At St. Mary's High School, I hope we will always be beginning a new phase in some type of technology, using all the tools we have at our disposal. It is an educational institution. If we are not training young men and women for today and tomorrow's world, then what is our purpose?
ERIC: A Valuable Program Improvement Resource

The ERIC database is a resource of nearly 400,000 education-related documents and articles, and it is often overlooked as a source of valuable program information by teachers, administrators, curriculum developers, and teacher educators. The majority of its documents are identifiable and available only through the ERIC system. New compact disk and telecommunications technologies are making access easier.

What is ERIC?

The Educational Resources Information Center (ERIC) is a nationwide network, sponsored by the U.S. Department of Education, designed to collect educational documents and make them available to teachers, administrators, researchers, students, and other interested persons. The ERIC system consists of 16 subject-oriented clearinghouses, adjacent clearinghouses, and support services. Together they cover all aspects of education. Of particular interest to agricultural educators is the ERIC Clearinghouse on Adult, Career, and Vocational Education (ERIC/ACVE) located at the Center on Education and Training for Employment at The Ohio State University.

ERIC publishes a monthly abstract journal, Resources in Education (RIE), which announces all documents that are acquired by ERIC. It lists the selection criteria. Current Index to Journals in Education (CIE) is a monthly index of approximately 1,500 journal articles from nearly 800 periodicals. ERIC attempts to acquire all recently completed significant documents dealing with education. The Agricultural Education Magazine is one of the many vocational education-related journals indexed by ERIC.

Documents announced in RIE (except for some copyrighted materials) can be purchased in microfiche or reproduced paper copy from the ERIC Document Reproduction Service (EDRS). EDRS sends complete sets of ERIC documents on microfiche to over 1,000 standing order customers in this country and abroad. All documents announced in RIE must be available to the public, either through EDRS or through an alternative source. The ERIC database includes more than 790,000 bibliographic records of documents and journal articles dating back to 1966. ERIC adds some 2,600 records to the database each month.

Why Use ERIC?

ERIC is a source of relevant, inexpensive, and easily accessible information and products. Many are "fugitive documents" such as research reports, program descriptions, conference presentations, instructional materials, and handbooks that are not available from commercial or other sources. Many of these materials can be readily adopted or adapted for local use.

How Can the ERIC Database Be Accessed?

Manual access to Resources in Education (RIE), and Current Index to Journals in Education (CIE) is available at most college and university libraries. The major vendors of online and compact disc retrieval services also provide access to the ERIC database and help to make it one of the most popular and lowest cost databases offered. Technology such as CD-ROM and the Internet have greatly improved access. Searching by CD-ROM is now available at many universities and state libraries free of charge. The CD-ROM files are updated quarterly to ensure timely and accurate information. ERIC is one of the largest major commercial databases to connect with the Internet. Currently, ERIC is available on the Internet through Syracuse University, Auburn University, the University of Saskatchewan, and the University of Nebraska at Omaha at Chapel Hill. Contact AskERIC on the Internet (askecie@eric-syr.edu) for information on making the proper connection.

What Services and Products Are Available?

The ERIC system provides a range of services to help use the database and to complement its information. All ERIC clearinghouses produce digests on topics of current interest that include references for more reading. Some develop mini bibliographies of annotated citations of items in the database. All clearinghouses produce monographs featuring trends and issues, synthesis papers, annotated bibliographies. Many clearinghouses offer newsletters.

- The ERIC Clearinghouse on Information and Technology at Syracuse University operates AskERIC, an Internet-based electronic information assistance, help, and referral service.

Center for Agricultural Science and Environmental Education

A new innovative program is under way in rural Ground School District, located in southwest Washington. This program is receiving considerable attention throughout the area and may serve as a model for future programs in agricultural science and environmental education.

Salmon Creek Center is located on an 80-acre site leased from the State Department of Natural Resources. The C.A.S.E.E. Project (Center for Agricultural Science and Environmental Education) includes three buildings, a forested area, an organic garden and a stream that is a tributary to Salmon Creek.

Located on either side of the C.A.S.E.E. classroom building are the homes of the school district administration and a leased building containing the United States Department of Agriculture (USDA), the Soil Conservation Service (SCS), the Farm Credit System, Washington State University Cooperative Extension, the Farm Home Administration (FHIA), the Agricultural Stabilization and Conservation Services (ASCS), and the Clark County Nuisance Weed Bureau.

Agriculture teacher Tim Hicks and science teacher Mark Wainin, who team teach the program, stress the importance of involving these agencies and their experts close at hand. Their expertise is vital to students in providing pertinent information regarding questions or problems involving student research projects. Both teachers are unaware of any facility in the nation that has captured such unassailable support of all the governmental agencies within a community.

Hands-on, Experimental Approach

The C.A.S.E.E. Project serves approximately 40 students from two high schools in the Battle Ground School District. The facility eventually should serve about 70 students each year. During a three-period time block twice daily, groups of students are engaged in individualized, practical projects which integrate learning experiences from the fields of agriculture, science, mathematics, environmental study, forestry, business, computer skills, and language. The goal of the project is to facilitate learning that is meaningful and emphasizes a hands-on, experimental approach.

C.A.S.E.E. is viewed as an alternative to traditional learning. Students receive three credits per semester, one each in English, science, and agriculture. Each student chooses a research area to study involving an agriculture, natural resource, or environmental science topic. To help collect information for their research, students use a modern technology lab complete with computers, color printers, CD ROMs, laser discs, color image scanner, and Internet tools which allow students to access information. Students focus on self-motivation, collaboration with professionals, and assessing and evaluating information that is relevant to them. A presentation using multimedia technology complete with a portfolio of research is required to finalize each project.

Community Involvement

The key to the C.A.S.E.E. approach is community involvement. Several projects that have stimulated student interest involve landscape forest management, and salmon enhancement experiments. Some students have begun test plots for numerous grass seed varieties. Other students are involved in nature trails with interpretive signs to identify species of trees and other vegetation. There is a two-acre organic garden where students strictly apply organic fertilizers and biological pest control methods. The students raise and release ring-necked pheasants to replenish the population. Use of several different irrigation systems and bee rescue techniques are among the experiments which are being developed at the Center.

Education for all ages is a focal point at C.A.S.E.E. With the assistance of experts from several governmental agencies and wide support from businesses and many individuals in the district, there will be a continuing number...
of projects awaiting students and the community in the years to come. Future plans include an animal science center, a greenhouse complex, and a nursery designed to serve as a demonstration of environmentally sound facility provided for the production of ornamental trees and shrubs. Long-range plans are an arboretum, ponds for wildlife habitat, a fisheries project, and an extensive water quality testing and management activity in Salamon Creek. Hopes are high that after an absence of 60 years,osalon runs could be re-established in the Salamon Creek watershed.

This is the first year for the C.A.S.E.E.P. project, and the future looks very bright. Students seem to enjoy the freedom and responsibilities of a land laboratory, and professionals like having the chance to work with pupils on mutually interesting subjects. It is an exciting and ambitious plan. Salomon Creek Center becomes an educational tool and model of interagency cooperation for the community state, and nation.

ERIC: A Valuable . . .

(continued from page 10)

AskERIC is an alternative approach for getting help over the Internet. AskERIC will respond via the Internet with an answer within 48 working hours. Send your questions to Internet address askeric@eric.syr.edu. In addition to providing answers to educational questions, AskERIC also provides the AskERIC Electronic Library (AEL), which is a Guide/Directory to selected educational resources including ERIC Digests, lesson plans, network information guides, and bibliographies. To use the AskERIC Electronic Library, go to http://eric.syr.edu.

ACCESS ERIC is another system resource. Reference staff can answer questions regarding the ERIC system and its services and products and refer you to the clearinghouses, which contain vast subject expertise in all fields of education. Call 1-800-LET-ERIC, Monday through Friday, 8:30 a.m. to 5:15 p.m. (eastern time) or access the Internet (access@net.ed.gov). Requests can also be made by writing to: ACCESS ERIC, 1600 Research Boulevard, Rockville, MD 20850.

ERIC/ACVE frequently offers a variety of services and products of particular interest to agricultural educators including "ERIC Digests," "Trends and Issues Alerts," and "Myths and Realities." They also have a search service and a reference and referral service. For a list of available materials, write to Judy Wagner, ERIC Clearinghouse on Adult, Career, and Vocational Education, 1900 Kenney Road, Columbus, OH 43210-1090, or send a message to ericave2@magnum.acs.ohio-state.edu.

Why Contribute Materials to ERIC?

The contents of the ERIC database have been provided by teachers, administrators, curriculum developers, evaluators, and researchers. There are several advantages of having a document in the ERIC database. These benefits include publicity, product dissemination, retrievability, and continuing availability. A document does not have to be formally published or enter the ERIC database. In fact, ERIC seeks out the unpublished or "fugitive" material not usually available through conventional library channels.

There is a wide variety of documents that are appropriate for entry into the database. Examples include research reports, program descriptions, conference presentations, instructional materials, teaching and research guides, curriculum materials, and handbooks and guides. For information on submitting materials, contact the Acquisitions Coordinator, ERIC Clearinghouse on Adult, Career, and Vocational Education, The Center on Education and Training for Employment, 1900 Kenny Road, Columbus, OH 43210-1090 (614) 292-4353 or (800) 848-4815) or Internet: ericave2@magnum.acs.ohio-state.edu.

Reference


The ERIC file. (1994, Spring). Columbus, OH: The Ohio State University, Center on Education and Training for Employment. ERIC/Clearinghouse on Adult, Career, and Vocational Education.


Money Management: A Financial Planning Curriculum

Agricultural educators have made tremendous strides in adapting curriculum to address our changing society. The influx of business management and other financial programs provides a learning avenue for students of agriculture. In agricultural business management courses, emphasis is placed on teaching such concepts as opportunity costs, supply and demand, and profit margins. But where is the curriculum to teach retirement planning other than in the "time value of money" unit? How much time is spent on IRAs, TSAs, and 401(Ks), not to mention how to read the business sections of the newspaper?

To most high school students, planning for the future means planning for college or for employment directly out of high school. Encouraging students to think about financial security and retirement becomes a challenge when students are asked to describe a lifestyle they desire for themselves and then develop a budget for that lifestyle. Business courses at the secondary level may teach balancing a checkbook; however, managing money for future financial stability has not been a function of the curriculum. Statistics show that today's millionaires spend more than $65 billion annually and have an excess of over 3.5 million credit cards (College for Financial Planning, 1991). Preparing teens for the future by teaching them the basics of money management is essential.

The High School Financial Planning Program (College for Financial Planning, 1991) is a curriculum designed to teach secondary students the basics of money management. The curriculum is divided into five units, which may be taught in 6 to 18 weeks depending upon the depth the teacher wishes to teach the material. The purpose of the program is threefold: to teach students about the financial planning process; to give students the opportunity to apply the process through exercises provided in the units; and to encourage students to begin to take control of their finances. The first unit in the Financial Planning curriculum is an introduction to financial planning. The goal of the unit is for students to gain a basic understanding of the steps in the financial planning process, including goal setting and decision making. A foundation is laid for the first units by emphasizing that effective money management is a disciplined behavior. The introductory unit begins by asking students how many of them would be interested in retiring at the age of 55 with one million dollars prior to taxes. The example of retiring at age 55 illustrates that to accomplish achieving one's goals, an individual must develop and follow a financial plan. This motivational tool also emphasizes the importance of maintaining a balance between satisfying today's wants and needs while planning for future wants and needs.

An essential concept students should learn from the second unit is that one of the single greatest assets an individual has in his/her life-time is earning power from either a chosen profession or from talents and skills. The second unit provides for comparing the relationship between earnings and education, training and experience. Career selection is presented as one of the primary variables for financial planning, and extended time can be spent on evaluating career opportunities. Analyzing payroll deductions is one of the learning activities provided with the second unit to help students determine the resources available for spending objectives. Students are asked to develop a spending objective, then budget the amount of time and money needed to meet that objective. Supplemental objectives on tax management, such as tax-deferred saving opportunities and applicable tax forms, are provided in the instructional materials.

Managing income and credit effectively appears to be a major concern in today's society. Asking 89.5% of the general population spends their earnings within one week of payday; we are a society in need of financial management training. Unit three of the financial planning curriculum stresses budgeting and credit planning. Developing credit worthiness, as well as exploring the financial implications of debt, are objectives of the unit. Young adults find it easy to obtain credit, but they are not able to manage monthly interest and principal payments. Determining wants versus needs is a critical factor of credit management since credit is a convenience that allows individuals to enjoy certain benefits now that will have to be paid for later. Following a savings plan (which gets) assures young individuals the ability to meet financial obligations.

Protecting assets against personal and financial loss is yet another important factor of financial planning. As assets are accumulated throughout life, they need to be protected

BY TAMMY BARTELODOMI & BETTY L. GABORIA

Ms. Barletodomio is an agriculture teacher at Arctic High School, Arctic, AK. Dr. Darnes is an associate professor of agricultural education at the University of Missouri, Columbia.
against personal and financial loss through the use of risk management techniques. Identifying the types of insurance and describing the principles of the insurance industry are just other functions of the financial planning curriculum. Utilizing current events such as Health Care Reform and recent natural disasters, while pulling samples of costs from these catastrophic events, drives home the idea of asset protection in the fourth unit of the curriculum.

The fifth unit of the curriculum focuses on savings and investments. Students gain insight on how to put their money to work for them and investigate available investment opportunities. The unit utilizes the principle of "time value of money" and most in agricultural business management curriculums. Following the lesson on the financial planning pyramid, which gives a pictorial representation of the lowest to highest risk alternatives, students can study the business section of the newspaper and conduct a simulation in investing $10,000 into stocks, bonds, or mutual funds of their choice.

The importance of diversification is stressed during this lesson on interpreting newspaper data. Students use a nine-week period to follow the markets and interpret the data collected. Required students' investment logs are articles pertaining to their investments and line or bar graphs showing stock movement. It is important during this time to invite resource persons such as financial consultants and investors into the classroom to support the lesson.

Taking control of your own financial plan provides the student the opportunity to incorporate the basics of units one through five into an individual financial plan. Students must develop budget worksheets for their individual situation and identify resources that will be used to achieve specific financial objectives. The High School Financial Planning Program (College for Financial Planning, 1991) curriculum recommends a plan where goals and objectives are met within a time frame of one to two years. This can be altered by having students use a timeframe of 6 to 10 years. A student must include in his/her plan a career choice and a style of living based upon this career choice. A student's career choice can be utilized to support and complete a personal budget showing realistic living expenses on his/her projected salary. In addition, a student must include in his/her budget a set amount for personal savings. This requires some extensive research on the student's part and establishes a way for the student to plan beyond high school and college.

The High School Financial Planning Program (College for Financial Planning, 1991) curriculum is available for free of charge to public and private schools. It is designed for a classroom implementation and can be easily incorporated into an existing agricultural business management class or can be expanded to a course of its own. As an instructor and student workbooks with prioritized objectives, transparency masters, learning activities, student assignments, and exams are included in the materials. The curriculum plays a fundamental role in educating students about financial planning prior to being confronted with adult financial responsibilities.

**Reference**


---

**Interactive Video...**

(continued from page 15)

...summers on campus. The instructors do a good job of making sure people at other sites are involved—through cooperative work groups. TVN is a great tool. It's allowed me a lot of flexibility and made my home life a little easier.

These students, and literally hundreds of others across the state, are participating in distance education—a learning situation in which teacher and learner are geographically separated from one another. There's nothing new about that concept. Universities have been offering correspondence courses since the late 1800s. Primarily a rural state, North Dakota has long had a need to provide educational opportunities to its citizens in remote areas.

---

**Subject Index Volume 66**

(continued from page 15)

**Essential Ingredients of a Successful Tech Prep Program**
- By Dr. John Morgan and Gary B. Keys, February

**Implementation Strategies for Tech Prep**
- By Clark R. Harris and Robert J. Barrett, January

**Programmatic Changes in Agriculture Technology**
- By Don Smithson, January

**Tech Prep—A Philip of Change**
- By Marry C. Schofer and Larry Voel, January

**Tech Prep—A Definition of?**
- By William W. Thomsen, January

**Tech Prep—Lessons Learned**
- By David M. Coffey and Tony Browne, January

---

**How Flexible are Our Programs?**

Individualized instruction, cooperative learning, Tech Prep, open-entry/open-exit, integrating academics, class within a class—where does all this lead and where will it end? Hopefully it will lead to better learning and will end with a better educated public. What do these topics mean to our programs? It means more students, a wider range of student abilities, adults and secondary students in the same class, and the need for more flexibility.

You might ask, "How can we be more flexible than we already are? We teach such a variety of topics now." If we step back and take a closer look at our programs, what do we really see? Do we see a program that will allow for a variety of student types, a variety of interests, and students coming and going at any time? Do we see a program taught by one teacher, or do we see a program flexible enough to use the expertise of other teachers for units or lessons they can teach better than we can ourselves? Do we see a program where we can teach our students and students from another class at the same time? Are we flexible enough to teach a multi-class setting? What about two classes at once?

When we look at our students do we see as many ways of learning as we have students? Do we use the ways we teach our students? At what point can you consider the abilities of each student? Are we teaching the students something that will transfer to all occupations? Are we able to teach male, female, minority, and handicapped students all at the same time at different levels with different abilities and interests? Is the curriculum designed to meet the needs of academically disadvantaged, learning disabled, behavior problem, normal, and gifted students all at the same time? The curriculum must contain competencies in English, math, science, communications, business, computers, and similar areas.

Do we teach the teachers to teach the different areas? Do we have a tendency to teach only the areas we are the most qualified to teach or are we more comfortable with teaching? Do we want to take the time to upgrade our skills and expand into unfamiliar territory? Do we have the desire or the abilities to get administrative, parental, and community support for our programs? Can we get the materials we need to teach all we need to teach, or do we have to "make do the best we can with what we've got?" Can we make do with what we have?

How flexible are our facilities? Can we accommodate increased student numbers? Will we have to find innovative ways to adapt to higher enrollments? Will we have to have more classroom space? Can we motivate more students? Do we want to? Will there be more paperwork? We already feel we have too much paperwork already.

I have read a lot of questions but have given no answers. Our programs will be as flexible as we let them be. Our programs are changing. We have to be flexible enough to change with them. It seems like every three to five years there is something "new" in education. We regularly respond by calling the same old thing the new thing. We need to think about what is best for our students and willingly make the changes that will benefit them the most. We have a tremendous responsibility to our students to give them the best education possible. If we are inflexible and resistant to change, we are robbing them of the best education.

Education has received a lot of bad press the last few years. If we have been flexible, accepted changes and improved student learning, and stayed abreast with industry technology, we might not have gotten the bad press. Technology in education has been running about five years behind industry. With technology changing the way it is, the new technology we teach is already old-fashioned.

If we are to produce the best educated students, we are going to have to have the flexibility to learn and teach the new technology, or find someone who can teach it for us. We have to generate support for our programs the way they are or be flexible enough to let them evolve to where they can meet the needs of our students.
FIBER OPTICS

Light transmissions over glass cable. Digital transmissions provide large capacities for multiple channel activity. Can be simplex (one-way) or duplex (two-way) voice, data, and video service.

MICROWAVE

Point-to-point transmission system. Provides program audio and video plus capacity for additional voice and data material.

ITFS

Instructional Television Fixed Service is a point-to-multipoint transmission system. Provides program audio and video to the receive location with audio return. With proper equipment, receive locations can be almost anywhere within 20 miles of an ITFS transmitter.

SATELLITE

Point-to-multipoint transmission system. Provides program audio and video to many users over wide areas simultaneously. For response from viewer, telephone is used.

INTERACTIVE

Identifies live communications with either two-way audio and video or two-way audio and one-way video. This provides for question-and-answer interactivity.

NARROWCAST

Transmission of programs to a specifically defined audience normally using the newer technology delivery systems. Sometimes referred to as a target audience, a limited audience, or a "narrow" audience, hence the name "narrowcast."

*from the Iowa Educational Telecommunications Network*