Sample Data Summary Table - Chemistry of Popcorn

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Brand A</th>
<th>Brand B</th>
<th>Brand C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Weight of measuring cup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Weight of cup and corn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Weight of corn</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Teaching Physical Science Applications in Agriculture
Theme Editor's Comments

Preparing Teachers to Teach Agriscience

We have now reached the point in secondary agricultural education where agriscience defines much of what we are about. As agricultural education is increasingly perceived as science-based instruction in agriculture, we must make sure that such a perception is, in fact, reality. Our curricula must readily convey an agriscience dimension, and our teachers must be able to effectively teach science applications in agriculture. Much of the revitalization of secondary agricultural education over the past six years has been driven by curriculum redesign, and this focus has been essential in bringing about the transformation of agriscience education. However, ensuring that teachers have the ability to effectively teach agriscience courses equally demands much thought and effort. This is especially true since agriscience has not been designed as a single curriculum unit, but rather, as an initiative that often cuts across the entire secondary agriculture program. We cannot assume that teachers are technically and pedagogically ready to effectively teach a science-based agriculture curriculum.

Problems and Needs

In order to effectively design agriscience pre-service and in-service teacher education programs, we must consider the problems and needs that characterize each of these two teacher groups. In two recent studies (Osborne & Dyer, 1996; Osborne & Dyer, 1995), science teachers and parents of secondary agriscience students were uncertain whether agriculture teachers had adequate preparation in science. This finding should not be surprising for a number of reasons. In the view of this author, the following circumstances suggest that this finding is valid: (1) university agriculture courses usually taken by teacher candidates often focus predominantly on management practices and secondarily on the scientific bases of these practices; (2) university agriculture courses often treat the science and management of agriculture as two distinct, incompatible areas of emphasis; (3) especially in college, there is almost exclusively taught as a science as a set of abstract concepts; (4) when applications of science are examined in college courses, the settings rarely involve agricultural examples; and (5) laboratory experience in college science classes follows a “cookbook” approach that allows limited opportunity for students to genuinely investigate and discover.

Older graduates have forgotten much of what they learned in their science courses due to course focus on concepts as abstract ideas, and new graduates do not have a working knowledge of science for the same reason. Thus, a gap exists in the technical preparation of agriculture teachers for teaching agriscience. Today's teachers must understand the science behind agricultural practices — an understanding and proficiency in agricultural practices is no longer enough. In addition, effective methods of teaching biological and physical science applications in agriculture must be explicitly addressed in pre-service and in-service courses and programs. Many teachers have found that different teaching methods are needed when teaching agriscience courses compared to other agriculture courses, especially if these courses are lab-intensive.

Possible Solutions

What are our options for ensuring that agriculture teachers are well prepared to teach science applications in agriculture? Several possible solutions for addressing the pre-service needs of teachers warrant our consideration. These include (1) a specialized designed course(s) taught by teacher educators, (2) team development and teaching of a special course by agriculture, science, and agricultural education faculty, (3) integration of technical and pedagogical content into existing agricultural education courses, and (4) assignment of this responsibility to coordinators of science as students complete their student teaching. Each of these options has clear advantages and disadvantages.

Cooperative Teacher Responsibility

(Option 4)

Cooperating teachers are in the best position to model effective agriscience teaching, and therefore, may arguably be in the best position to teach related courses. Thus, the cooperating teacher must enthusiastically accept the role of teacher educator and demonstrate the curriculum knowledge and pedagogical content knowledge necessary to teach effectively.

Table of Contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Theme Editor's Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Preparing Teachers to Teach Agriscience</td>
</tr>
<tr>
<td></td>
<td>The Physical Sciences and Agriculture</td>
</tr>
<tr>
<td></td>
<td>Theme Articles</td>
</tr>
<tr>
<td></td>
<td>Using Experiments to Teach Agriculture</td>
</tr>
<tr>
<td></td>
<td>Oooh! Ahhh! So That's How It Works!</td>
</tr>
<tr>
<td></td>
<td>Keeping Agriculture in Agriscience</td>
</tr>
<tr>
<td></td>
<td>Sharpening Twist Drills</td>
</tr>
<tr>
<td></td>
<td>Safety in the Agriscience Laboratory</td>
</tr>
<tr>
<td></td>
<td>Letter to the Editor</td>
</tr>
<tr>
<td></td>
<td>A View from the Agricultural Mechanics Laboratory</td>
</tr>
<tr>
<td></td>
<td>Feature Article</td>
</tr>
<tr>
<td></td>
<td>Interpersonal Skills</td>
</tr>
<tr>
<td></td>
<td>A Need in Agriculture Careers</td>
</tr>
</tbody>
</table>

Theme Editor's Comments

Preparation of Teachers to Teach Agriscience

Edward W. Osborne

The Physical Sciences and Agriculture

Phillip Burkak

Theme Articles

Using Experiments to Teach Agriculture

Glen M. Miller

Oooh! Ahhh! So That's How It Works!

Diana Lorch

Keeping Agriculture in Agriscience

Jeffery W. Moss

Sharpening Twist Drills

Jack M. Holmberg and Don Holm

Safety in the Agriscience Laboratory

Larry J. Podel

Letter to the Editor

A View from the Agricultural Mechanics Laboratory

Jim Sorenson

Feature Article

Interpersonal Skills

Gary Waters

A Need in Agriculture Careers

Vernon D. Lafit
teachers are themselves solidly grounded in the technical and pedagogical aspects of teaching agriscience. As was stressed earlier, this may often not be the case, due to a variety of factors mostly out of the teacher’s control. The extent of teachers’ content and pedagogical expertise in teaching agriscience will be dependent to a large degree upon the nature and extent of agriscience in the agriculture curriculum at the cooperating center. Thus, the major drawback to this option is that pre-service teachers will not be uniformly prepared to teach agriscience.

Integration into Existing Agricultural Education Courses/Programs

The content and methods of teaching agriscience could be integrated or infused into a number of agricultural education courses. The major advantage of this approach is that continuing attention can be given to teaching agriscience throughout the four-year teacher preparation program. In addition, the problems and questions associated could be selected to match students’ stage of development toward becoming an effective teacher. Such an integration strategy, however, is probably not a sound solution to this problem for several reasons. An integration approach implies that the “content” must be segmented and then these pieces taught in specific courses in the agricultural education program. This strategy may result in several pieces “falling through the cracks,” and thus, fragmented and incomplete preparation of teachers. This strategy requires extensive and continuous communication among faculty teaching the various courses. Such an approach is also likely to fail in giving students “the big picture” regarding teaching agriscience. Thus, for several reasons, integrating or infusing the technical and pedagogical content for teaching agriscience into the Agriculural Education sequence of courses is not a viable option by itself.

Team Teaching with Content Area Faculty?

Agricultural educators could team up with agriculture and/or science faculty to develop and teach a course designed to prepare students for teaching agriscience. This option offers several advantages: a high level of subject matter expertise, increased resources, more credibility, and the benefit of complementary strengths of two or three faculty. On the other hand, a number of problems are associated with this option. These include less control over course content and methods by the agricultural educator, greater difficulty in coordinating teaching activities in the course, a notable lack of the course being delivered in a diversified manner, and difficulty in finding suitable partners with whom to team up to teach the course.

An Agricultural Teacher Education Responsibility? (Option 1)

Another possible solution is for the agricultural teacher education faculty to step forward to develop and teach one or more science applications in agriculture courses for agriculture teacher candidates. This strategy would provide a solid link to agriculture units and improve the views held toward agricultural education by other faculty and administrators in colleges of agriculture. Such a strategy would also allow the course content to be directly targeted toward the technical and pedagogical needs of agriculture teacher candidates. A course such as this should parallel that taught in secondary agriscience courses. This course should be designed as a lab-intensive course such that students learn through experimentation, demonstration, and inquiry. Such a course, perhaps simply titled “Teaching Agriscience,” might become popular for non-Agricultural Education majors, but teacher education students should still be given priority when enrolling. The course instructor would need to constantly update course content and search for new labs. Because many universities in agriculture programs are very small with respect to faculty FTEs, a teaching-intensive course like this may require additional teaching FTEs in some departments.

The content of an agriscience methods course should be structured around major agricultural systems and major management practices in agriculture. (See Burack and Osborne, 1985, for a suggested systems format.) Both biological and physical science applications in agriculture should be addressed in the course. Students should have the opportunity to grow key crops that they would likely teach to their own high school students (see Osborne, 1994, as an example source). As each lab is performed, the class must be challenged to consider the most effective teaching approaches and methods that they can use in teaching those labs to their students.

Can Teacher Educators Deliver? Teaching an agriscience methods course could cause great anxiety for many agriculture teacher educators. Like high school agriculture teachers, teacher educators would also have a wide gap in their technical knowledge base in agriscience. Getting prepared to teach the technical content of the “Teaching Agriscience” course would require many hours of self-study and professional development. However, teaching a course such as this would allow teacher educators to establish stronger connections to the field of agriculture and facility colleagues in agriculture. In addition, teaching this course (Continued on page 23)
Using Experiments To Teach Agriscience

YOU ARE DIFFERENT!! YOU ARE UNIQUE!!! STUDENTS LIKE TO
COME TO YOUR CLASS!!! STUDENTS LEARN FROM YOU!!! STUDENTS REMEMBER WHAT YOU TEACH!!! STUDENTS APPLY WHAT YOU TEACH TO THE REAL WORLD!!!

Many teachers are really worried about increased science being integrated into the agricultural education curriculum. They ask themselves "What will keep the principal from replacing me with a science teacher?" Relax, you really are different, and what makes you so special is what makes agricultural education so special - it is real.

Experiments in agriscience are old and they are new. They are as old as seed wrapped in paper towels to check germination rates, and they are as new as recombinant DNA.

This is not new. We have always taught the scientific principles which form the foundation of agricultural mechanics. We have not always named the principle for the student. Agricultural mechanics is a perfect vehicle to teach physical science. Scientific experiments are directly translated into applications in agricultural mechanics. I would like to share some experiments I find useful in teaching scientific principles through agricultural mechanics.

One experiment that develops student interest and can be directly translated into an agriscience wood construction activity is the holding power of different fasteners. In this experiment, I assemble several different stud and plate configurations using glue, 8 penny smooth box nails in a toenail configuration, and 16 penny smooth box nails nailed on an end grain basis (see photo 1).

The lumber is placed in a device developed by Dr. Clinton Jacobs. This device consists of a lever arm that has a fulcrum with a 10 inch to 4 inch ratio. The end of the lever arm has a 1/2 inch square hole which accepts the drive end of a torque wrench. A bending beam type foot pound torque wrench is then placed in the hole and the lumber is pulled apart (see photo 2).

Allow the students to predict the force required to destroy the joints. Students will almost always assume the nail joint will be the strongest. In the test done for the photographs in this article, the 8 penny toe nail joint read 70 foot pounds on the torque wrench while the 16 penny end nailed joint produced 100 foot pounds and the hot glue joints require a pressure of 145 foot pounds. (Note: Be careful if you choose to duplicate this experiment. The glue joint will fail forcefully without warning.)

The scientific principle underlying the practical use of electricity is a mystery to many. Students have great difficulty visualizing magnetic lines of force and the induction of current in conductors. One experiment that helps students visualize magnetic lines of force is the placing of a bar magnetic on the screen of your overhead projector. Place a piece of acetate over the magnet and turn the projector on. Sprinkle iron filings or shavings over the metal cutting band saw on the acetate. The filings will align themselves with the magnetic lines of force.

The experiment consists of dropping a cow magnet (purchased from a veterinary supply house) through the inner most pipe. Then drop a piece of 1/2 inch cold rolled steel cut and shaped to resemble the cow magnet. Students will immediately notice the difference in speed between the cow magnet and the piece of 1/2 inch mild steel. See photo 9 below. (Photo courtesy of Glen M. Miller)

By placing an inch pound torque wrench on each axle, the input and output torque of the ten speed can be measured through all ten gears. Students can then directly observe the relationship between a speed ratio and torque ratio. The principle of the conservation of energy is revealed on a familiar speed bicycle. Dr. Balak has included this activity in the book he co-authored with Edward W. Osborne entitled Physical Science Applications in Agriscience (1996) published by Interstate Publishers, Inc., Danville, Illinois.
This same experiment can be used for thermodynamics illustrations. The mist coming from the tube immediately cools the air in the area. This mist can be safely directed toward students to illustrate the principle of evaporative cooling. As the water changes to a gas, it absorbs heat. As refrigerators evaporate inside an evaporator, they also absorb heat. You can probably think of other experimental uses for this activity.

Other experiments I find useful include the principle of work. Using a tool box, I call a student forward to lift the tool box. The student is asked to hold the tool box, and the other students are asked to tell me what is happening. It is relatively easy to get the concept that the student holding the tool box is applying force to the bottom of the box. The concept of work follows when then students think through the process of lifting the tool box from the floor. Two measurements are then taken, the weight of the tool box and the distance it was lifted. You and the students can then compute the foot pounds (distance x weight) required to move the box.

The concept of torque is also easily illustrated in a humorous way. Ask a student to come forward and hold one end of an eighteen foot 2 X 4. The instructor can then use a spring scale, such as a fish scale, to place a load on the far end of the 2 X 4. Instruct the student to resist the effort to twist. Of course, the leverage of the 2 X 4 easily overcomes the strongest student. Only a few pounds of force is required to twist the student.

A wealth of experiments exists that make teaching exciting. A great way to share your teaching experiences is through our professional organization and the Ideas Unlimited Contest. Take a moment today and share one of your great teaching experiences with someone else.

THEME ARTICLE

Oooh-Ahh: So That's How It Works!!

Have you heard your students oooh in amazement lately? Ever? Well, if the answer is no, perhaps teaching some physical science applications in agriculture can change that. Whether you have an agriculture lab or your students use other labs, you can change the way they think about science. The key is to make it relevant to them. This is done when you use science to answer questions that are important to them. The students will then see the value in what they are learning.

One way to do this is to incorporate science into the agriculture curriculum. By doing this, you are giving students a chance to see how science is used in the real world. They can then see how the science they are learning can be used in their future careers. This is particularly true for agriculture students. They are learning how to grow food and how to care for the environment. By incorporating science into their curriculum, they can see how these skills are used in the real world.

Another way to incorporate science into the agriculture curriculum is to use it to solve real-world problems. For example, you could use science to help solve a problem with crop yields. This would show students how science is used to solve problems in the agriculture industry.

In conclusion, incorporating science into the agriculture curriculum is a great way to make science relevant to students. By doing this, you are giving students a chance to see how science is used in the real world. They can then see how the science they are learning can be used in their future careers. This is particularly true for agriculture students. They are learning how to grow food and how to care for the environment. By incorporating science into their curriculum, they can see how these skills are used in the real world.

By: Dawn Leshien

Leshien is an agricultural instructor at Vreeland High School in Calumet, Illinois.
Keeping Agriculture in Agriscience

For agricultural education, the decade of the 90s belongs to agriscience. Schools now offer agriculture classes which count for science credit towards high school graduation, and in some states these courses are also recognized as laboratory science classes for college admission. Six years ago there was one agriculture textbook with agriscience in the title, today there are nearly a dozen. The National Council for Agricultural Education has provided instructional materials and teacher inservice on agriscience using Fast Plants and Rosalind Biology, Food Science, and Avian Environmental Science. The attention given to agriscience is significant; curricular changes are occurring rapidly.

Actually, the merging of science and agriculture isn't just a 1990s phenomenon. Agriculture was taught as a science when it first became part of the school curriculum, and that was 20-25 years before the Smith Hughes Act of 1917. The concept of learning science principles through agricultural applications was being written about in the 1800s as well as the 1900s. Although the concept of agriscience may be 100 years old, the content is certainly different, as the knowledge level for both science and agriculture has become more sophisticated.

Benefits of Agriscience

Does agriscience represent an improvement in agricultural education? Most people seem to think so. Agriscience programs are attracting a new group of students to agricultural education. These students aren't particularly interested in a career as a farmer, driving a combine or managing a farm-to-finish swine operation. But, they are enrolling in agriscience courses because they can learn [science and agriculture] by doing [science and agriculture] in these classes. In general, agriscience has given agricultural education its new image of being more than farm animals and machinery (you know, the cows and plows metaphor). Agriscience is also perceived as a more rigorous curriculum, probably because of its non-vocational focus and link to a traditional academic subject, science. In an era of school reform, a more rigorous curriculum is another positive for agricultural education. And finally, agriscience is providing education about agriculture, functioning as an agricultural literacy course which is recognized as a critical need for the future. With all these benefits it's hard to imagine any drawbacks to agriscience.

But wait a minute. In our attempt to integrate science and agriculture in our rush to add more curricular science to our agriculture classes, there is the potential for doing agriscience the wrong way. In some programs as new agriscience curricula evolved, they focused on the content and process of learning science primarily through experiments conducted in the classroom. If students get science credit, they need to learn the science, agreed. Does that mean learning less agriculture? Is FFA less intracurricular in agriscience? Is SAE less important for agriscience students? I don't believe so, and it may only require that we re-examine our methods of teaching agriscience. In our search for new content, we don't have to leave behind certain components of agricultural education which have made the program unique. A strong of agricultural education for the past 70 years has been the integration of classroom instruction, FFA, and supervised agricultural experience. We need to be sure that the curriculum for agriscience includes the proper mix of all three of these components. If agriscience is to serve a function of agricultural literacy, then agriculture must remain a focus of agricultural science courses.

Agriculture is the Application

Agriculture and science are a natural combination. J.J. Bacher, a science teacher in Pekin, Illinois who recently took her first agriculture course, a methods of teaching biological science applications in agriculture class, said it quite well: "The key to science education today is to not only have a general understanding of the biological vocabulary and processes but to be able to apply this information to solve problems. [Agriscience] lets the student go beyond just the basic knowledge and actually apply the biological information." The real

(Continued on page 15)

Sharpening Twist Drills

Jack McHague, Instructor
Dan Hood, Leading Arbor and Technical Consultant
Department of Agricultural Engineering

The ability to sharpen twist drills by hand is a very valuable skill for anyone who spends time in a metal shop. Even though there are drill sharpening attachments for grinders, they require setup time and often have complicated instructions. Time is a critical factor since many shops charge at least $40 per hour for labor. The short time required to sharpen drill bits pays dividends in faster production and increased longevity of drill bits.

Use and Care of Twist Drills, which can be purchased for $1.00 from Cleveland Twist Drill, discusses parts of drill bits and terminology.

Starting Position

1. Hold the cutting end of the drill between thumb and forefinger of right hand and lay the forefinger on the grinder rest. The finger will be kept stationary and should not be lifted from the grinder rest during sharpening (Fig. 1).
2. Hold the shank of the drill between thumb and forefinger of the left hand as in Fig. 1.
3. The cutting edge of the drill should be parallel to the top of the grinder rest as in Fig. 3.
4. The drill should be held at a 50° angle to the centerline of the stone (Fig. 1).
5. The center line of the drill should point slightly above the center of the stone as in Fig. 2.
Grinding the Drill

Move the drill to the stone and as the grinder makes contact, rotate the left thumb and forefinger down and to the left as in Figs. 4 and 5. The knuckle of the left forefinger indicated by the X in Figs. 4 and 5 should act as a pivot and should not move. The drill will rotate about 1/6 turn because of this motion as can be seen by the rotation of the grid attached to the drill in Figs. 4 and 5. Do not rotate the drill between left thumb and forefinger as this would cause rotation of more than 1/6 turn and would cause an S-shaped chisel point. An S-shaped chisel point decreases the length of cutting edges and requires excessive pressure while drilling.

Do not jab the drill into the stone—use even pressure throughout the grind.

Repet this grind, alternating between cutting edges, until the cutting edges are sharp, both cutting edges make a 59º angle with the axis of the drill, lengths of both cutting edges are equal, and there is an 8º to 12º lip clearance. The chisel point should be straight and form a 120º to 135º angle with the cutting edges.

Measuring Twist Drills

1. Use a drill bit gauge or protractor head square to make sure cutting edges form a 59º angle to the axis of the drill (Figs. 6 and 7).
2. Use a drill bit gauge or dividers to make sure lengths of cutting edges are equal to each other (Figs. 6 and 8).
3. Use a protractor head square to measure lip clearance. Lip clearance of the drill in Fig. 9 is 90º minus 79º = 11º.
4. Use a transparency made from the Cleveland drill book that shows the cutting end of a correctly sharpened drill to measure lip clearance at the cutting point. When the transparency is overlaid on the drill in Fig. 10, it is evident that the angle formed between the chisel point and the cutting edges is too close to a 90º angle. This indicates a lack of lip clearance at the chisel point. Even though lip clearance may be correct at the margin, this drill would require excess pressure to make it cut. Fig. 11 shows the correct angle of the chisel point to cutting edge.
Correcting Faults of Twist Drill Sharpening

Faults:
• Uncut length of cutting edges.
• Not enough lip clearance.
• Too much lip clearance.
• S-shaped chisel point.
• No lip clearance at chisel point.

To Correct:
• Grind short edge more.
• Move shank toward DOWN (Fig. 2) at start of grind.
• Move shank toward UP (Fig. 2) at start of grind.
• Do not rotate drill as much.
• Not enough movement to left (Fig. 3).

Other Hints
Use a bar of Ivory soap as a substitute for metal. Cutting the soap with a drill bit held in the hand will effectively demonstrate the proper cutting of a drill bit. It is difficult to remove even soft soap with a drill bit that lacks lip clearance.

Make sure grinder guards are in place while grinding. Guards were removed for clarification purposes only for this paper.

Reference
Use and Care of Twist Drills, 1978 Cleveland Twist Drill, P.O. Box 91839, Cleveland, OH 44101.

Keeping Agriculture in Agriscience (Continued from page 10)

understanding of science comes through associating science concepts and principles with relevant applications to life. Agriculture happens to provide the food and fiber for everyday living.

To maintain a balance of science and agriculture, I recommend using real agriculture problems as an approach for introducing science content. Problem-solving has been used in agricultural education for a long time. Be aware, however, that to be effective the problems must be meaningful to the students. You will have to look beyond the familiar production-oriented problems we solved in the past when teaching agriscience for the future. It can be done with perseverance and patience according to Mindy Elridge, a first-year agriculture teacher at Monticello, Illinois. "I just keep hitting them with problems until something is relevant to their life and grabs their interest."

Keeping the proper balance of agriculture in agriscience also requires teachers to keep current with new agricultural technology. New developments are reported monthly in agricultural magazines, journals, and newspapers. Agricultural Research, a publication of the U.S. Department of Agriculture, is an excellent resource available free to all members of the National Vocational Agricultural Teachers Association. Multiple copies of Agricultural Research can also be requested for classroom use. Keeping current in agriculture requires investing time in learning about the new developments. You may also keep subject matter current by inviting resource speakers and scheduling field trips to agricultural businesses, allowing students to see firsthand how science is helping to solve important agricultural problems.

FFA has recognized a change in its customers, the students, and is responding by developing new programs and activities for members. Agriscience student competition, agricultural science fairs, and an overhaul of career development events are examples of making programs relevant to the agriscience student. As a teacher, if you have changed your curriculum to agriscience but still participate in exactly the same events (FFA contests) of five years ago, maybe it's time to shift priorities and try some new activities. It requires some extra effort and won't be easy, especially if you've won the section poultry contest the past five consecutive years. If we want agriscience students to benefit from the FFA experience, we need to provide those opportunities which match their interests. FFA should be an intrinsically agriscience activity. Students should find a greater interest in crop and livestock projects for an SAE. Consequently, they may not need to learn the finer details of keeping a production record book. However, in agricultural research, record keeping or documenting the research protocol is as important as the results of the experiment itself. There's definitely a place for SAE and record keeping for all students in agriscience. The idea of providing planned, practical activities conducted outside of scheduled class time in which students develop and apply agricultural knowledge and skills is as appropriate for agriscience as it was for traditional vocational agriculture. I recommend you obtain a copy of Experiencing Agriculture: A Handbook on Supervised Agricultural Experience, and review the nature of supervised agricultural experience and your responsibility for planning, conducting, and supervising SAEs in light of the changing times and interests of students in agriscience programs. Done well, supervised agricultural experience provides a powerful learning experience for agriscience students. Student achievement in agriscience is common measured in two ways, performance on quizzes or tests and student laboratory reports. In both situations it's important to assess what students have learned about science and about agriculture. Test questions covering how an agricultural practice is impacted by a science concept or principle is as important as defining the principle. As an example, students should be able to explain common planting practices for local crops and discuss the environmental factors affecting seed germination. Similarly, when students write conclusions in their laboratory reports they should be able to relate information learned in the experiment to management practices followed by producers. Once more, it's a matter of balancing agriculture and science in the evaluation of student performance.

A good method of evaluating teacher performance is through self-assessment. If you teach an agriscience class, rate yourself on the following statements about how agriculture is treated in your agriscience courses.

(Continued on page 24)
Safety In The Agriscience Laboratory

By Larry Pfiffer

Mr. Pfiffer is a district representative for the Facilitating Coordination in Agricultural Education programs in Carlinville, Illinois.

In the agriscience laboratory at your school a pleasant and safe environment is a necessity. To work and learn? If you can answer yes to this question without hesitation or reservation, chances are your school district has an effective laboratory safety policy. If you aren’t sure you have a good policy, it may be time to review your safety practices.

Safety is a very important concern in agriscience courses because students are attempting to learn new skills, working with unfamiliar equipment and using materials that can pose some degree of hazard. The nature of hand-on activities makes laboratories more vulnerable to accidents and mishaps than seat work.

It is beyond the scope of this article to provide a comprehensive safety policy for all agriscience programs, but it will offer a framework for reviewing agriscience laboratory policies that are conducive to a pleasant and safe environment.

Sample Safety Inspections

Safety checks of the physical layout and condition of the agriscience laboratory are an effective way to document a safety inspection. It is recommended that a safety inspection be repeated every three months.

School: ________________________________

Inspector: ________________________________

Date: ________________________________

<table>
<thead>
<tr>
<th>Check for proper operation of:</th>
<th>Satisfactory</th>
<th>Unsatisfactory</th>
<th>Date Remedied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas cylinders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical outlets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fume hood</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auxiliary ventilation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition of:</td>
<td>Satisfactory</td>
<td>Unsatisfactory</td>
<td>Date Remedied</td>
</tr>
<tr>
<td>Fire extinguishers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire blanket</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First-aid kit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Spill clean-up kits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazards</td>
<td>Satisfactory</td>
<td>Unsatisfactory</td>
<td>Date Remedied</td>
</tr>
<tr>
<td>Exits are not blocked.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aisles are not cluttered.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemicals are not stored in room.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemicals are properly labeled and stored.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Housekeeping</td>
<td>Satisfactory</td>
<td>Unsatisfactory</td>
<td>Date Remedied</td>
</tr>
<tr>
<td>Sinks and sink traps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fume hood</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work counter tops</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Table tops</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No food or drink</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broken/damaged equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste containers for chemicals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Spill clean-up kits can be made from two five gallon plastic buckets. Fill one bucket with kitty litter and the second with baking soda. Cover each bucket with plastic food storage wrap and write on the plastic wrap the contents and "spill clean-up kit".</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Responsibilities

Safety in an agriscience lab is a shared responsibility. A safe laboratory program requires participation by teachers, students, administrators, and the community.

Administrators’ Responsibilities
1. Provide a safe and effective laboratory area for agriscience activities.
2. Provide regular inspections of the laboratory and document inspection and maintenance of safety equipment.
3. Comply with state and federal regulations for disposal of chemicals.
4. Establish a school safety committee and ensure that it meets regularly.
5. Attempt to provide a class size appropriate to the laboratory and in keeping with recommendations of professional societies.

Students’ Responsibilities
1. Understand the experimental procedure before starting work in the agriscience laboratory.
2. Be familiar with the properties and hazards of the chemicals you are working with.
3. Obey all safety rules and regulations and sign a safety contract.
4. Know the location and use of all safety equipment in the laboratory.
5. Clean your work area immediately after use. Obey housekeeping practices.

Parents’ Responsibilities
1. Read the laboratory safety rules. Discuss these rules with your child. Sign the safety contact indicating that you have read and understood the safety rules.
2. Work with the teachers and administrators to develop a strong safety program.

Teacher's Responsibilities
1. Set a good example by observing all safety rules, wearing proper protective equipment, and being enthusiastic about safety.
2. Know the properties and hazards associated with each material used in a laboratory activity before the students carry out the procedure.
3. Ensure that all safety equipment is present in the laboratory and is in good working condition.
4. Provide eye protection and other necessary personal protective equipment to students and instruct students in their use.
5. Before each laboratory experiment, instruct students about the hazards associated with each activity. Emphasize the use of eye protection and other necessary personal protective equipment.
6. Ensure that all containers are properly labeled with their contents and hazards.
7. Make sure that all safety rules are obeyed.
8. Promptly clean up or direct the clean-up of spills.

Food Science and food processing laboratories are popular physical science activities. (Photo courtesy of Larry Pfiffer)

Teacher’s good example is essential to the effectiveness of the laboratory. This photo demonstrates that students have a pleasant and safe environment in which to work and learn. (Photo courtesy of Nathan Morris)
Safety In The Agriscience Laboratory

Agriscience Safety Contract

Dear Student:

An agriscience class is different from some of the other classes in which you are enrolled. It is a lab class and therefore involves activities that are potentially hazardous if proper procedures are not followed.

In an effort to make you more aware of safety considerations, the following contract is to be signed by you and one of your parents. It is my hope that you will give some thought to the items listed below and the reasons why they are included in this contract. Also, by having your parent sign, it is my hope that they, he or she will reinforce to you the need for safety in a lab class.

This contract does not absolve either me or the school district of liability if in fact we are found to be negligent. A student's failure to follow the following rules may result in his or her removal from the class.

Sincerely,

Teachers Name
Agriscience Teacher

☐ I will follow all written and oral instructions given by the teacher.

☐ I will only do the lab work approved by the teacher. No independent work is allowed without explicit approval of the teacher.

☐ I will not remove any chemicals, tools or equipment from the lab.

☐ I will not misbehave or engage in any "horseplay" while in the lab.

☐ I am aware of the locations of the eyewash, safety blanket, and fire extinguisher and know how each is to be used.

Signature of student ______________________ Date ______

Signature of parent/guardian ______________________ Date ______

If you have any questions or comments, please feel free to call me at (school phone #)

A View from the Agricultural Mechanics Laboratory Egress Opening (Shop Door)

There seems to have been an obvious increase in business at the teachers R&R center lately. Well maybe school hasn't been as smooth as it could have been, or maybe folks have just been dazed by what's coming out of Alexandria, Virginia. As I understand it, the FFA will no longer hold CONTESTS. It will, however, sponsor CAREER DEVELOPMENT EVENTS. This new development has been too much for older and wiser advisors. It may have been the straw that drove Tess into retirement. I sometimes wish I could join him. Why, I can read the headlines in the Meridian Times — local chapter of the FFA places first in the Dairy Career Development Event (CDE) held at the South Hills Institute of Technology. I can see the look on readers as they think to themselves, what the hell is a CDE? Where did the South Hills Institute of Technology come from?

Now I think a little history lesson is in order here. Or should I say Past Historical Education Activity (PHEA)? First, the powers somewhere decided that students should no longer conduct ag projects, but should instead have SOEP (Supervised Occupational Experience Programs). Then when most everyone was becoming comfortable with that term, it was changed to SOE. I guess that made the acronym easier to remember. Then it was changed to SAEP (Supervised Agricultural Experience Programs) and shortened to SAE, which I always thought was a fraternity. But again, I was wrong. What I think will be necessary to clean up this mess is a new program called the Supervised Occupational Agricultural Program, also known as SOAP. I don't know, however, if we will be able to afford enough of it, on our limited budgets, to clean up this mess.

To continue with the PHEA, we must now remember that FFA no longer is an acronym for Futures Farmers of America. It stands for FFA. But in some circumstances, it still can stand for Future Farmers of America. Confused? So am I. In addition to removing Farmers from the organizational name, it was removed from the FFA Creed. We (?) changed it to agriculturists. Now I dare anyone to walk up to a farmer and tell him or her that he or she is no longer a farmer and should now call themselves agriculturists. I guess that if you are a cattle rancher, you should no longer be known as a cattle rancher, but rather, as a Bovine Specialist. This even has an appropriate acronym for this whole column.

What about the change from Vocational Agriculture to Agriculture Science and Technology Education, sometimes known as Agricultural Education. But instead of being called ASTE it is still most commonly referred to Vo-Ag. Oh well.

Now for the latest issue at hand: the CAREER DEVELOPMENT EVENTS. Again allow me to refer to the South Hills Institute of Technology. A contest is a contest and a borine specialist is a borine specialist, no matter what the politically correct terminology may be! And you may quote me on that — but be sure to use the appropriate acronyms.

To put this in perspective, let me go to the sacred high school athletic events also known as sports. Now let's change a football game from a football game to the more appropriate terminology: Physical Enhancement Activity. But now that can't be correct because football involves more than just physical enhancement. It also involves mental development as well as building self-esteem and social skills.

Perhaps Social Activity Involving Mental and Physical Development Activities (SAMPD) A would be more appropriate. While this does not describe a football game, it may be a much more appropriate term than sports. But then, how will we distinguish between a football game and a volleyball game?

I don't know, but even I am getting confused. I believe I will go back to the South Hills Institute of Technology and try to get a Higher Education Academic Degree. Now if

(Continued on page 22)
Interpersonal Skills: A Need in Agricultural Careers

It is clear that educational reform, especially in vocational education, has embraced the concepts of accountability of programs and transparency of outcomes (American Vocational Association, 1994). In a time when government expenditures at all levels are carefully scrutinized for their impact, education is vital for having a handle on how expenditures affect students and learning (Council of Chief State School Officers, 1994). In fact, the entire educational reform effort appears to swing on that singular concept, and most recommendations do not address the role of standards, outcomes, and measures (American Vocational Association, 1994). Government, business, industry, parents, students, and progressive educators are demanding that program improvement and student progress be validated and outcomes measured (Hedlund, 1993). It is evident that if any program, service, or activity is to be funded in future educational legislation or initiatives, the language and concepts of clear standards and measures must be a central priority (Secretary's Commission on Achieving Necessary Skills: SCANS, 1991).

One can quickly recognize that the foundation of competencies outlined in the SCANS Report and discussed in other professional publications is a component of employability. Fundamentally, interpersonal competencies are the skills needed to maintain a job, get along in a job, and keep a job. In fact, it is well known that the major reason employers are terminated from their employment is not because they cannot perform their occupational tasks, but rather, they cannot get along with the people with whom they work.

Concepts taught and promoted in interpersonal skill development are fundamental to working with others and getting along on the job. Inappropriate attitudes, language, and behavior should not be tolerated in the workplace. Workers are protected by law and through the courts from being exposed to it and suffering from its effects. Employers have a duty to protect their employees from inappropriate harassment and the damages for allowing such inequities to exist. Consequently, employers and schools are at a great risk for the incompetence of an interpersonally inadequate worker than a technologically inadequate one. A technologically incompetent worker can be found. If interpersonal incompetence is found to be rooted in discrimination, monetary liability can result in substantial damage or possibly destroy a business and its owner. For further proof of the impact on business of interpersonal incompetencies of workers, we need to look no further than the recent court awards for sexual harassment.

As a result, interpersonal education is important as a basic skill and competency for employability. Logically, students in agriculture need to know this fundamental workplace expectation. This interpersonal workforce competency should be considered equal to any technical competency which students or seasoned workers are expected to possess.

The employability skills section of the Agricultural Biotechnology Technical Skill Standards can serve as an excellent basis for developing the necessary competencies. They appear to be relevant to all careers in agriculture, and not just biotechnology. In fact, employability skills should become an essential part of every agricultural skill standards document developed.

If employability skills are important in developing agricultural workers, should texts include a section on the topic? We believe they should. Interviewing some of the recently published agricultural texts, we found that while the text, The Earth and Agriculture, by Cruckson, Osborne, Newman, Osborne, and Lee (1995) contains an entire chapter on "Developing Personal Skills". This is an excellent chapter which could be used to teach interpersonal skill development.

Students can learn the employability skills through classroom and laboratory activities and management, their supervised agricultural experience program, and FFA activities and programs. Emphasis should be placed on desired workplace behaviors when participating in these various learning situations. The transfer of employability skills to the workplace will occur with fewer problems.

Interpersonal Skill Development as Program Improvement

While it is clear that a central element of the Carl Perkins Act is to provide access of special populations to improved vocational education, many argue that the primary purpose of the Act is program improvement and that the needs of special or unique populations (and the services that accompany these groups) have been over emphasized (Forner, 1994). Others counter with the concept that until access and equal opportunity is extended to all students who seek to participate in vocational education, especially those who are members of special student populations, that substantial contributions and significant efforts should be directed to resolve the inequity (Casidy, 1994). The need for interpersonal competencies is highly concentrated to special student groups who are clearly in need of them, but by all students who are participating in vocational education, including agricultural education, and will be emphasized as a result. Agricultural careers are no less "interpersonal" in nature than any other. In fact, as the agricultural workforce becomes more diverse, interpersonal skills become more important.

Some have strongly claimed that interpersonal education serves primarily the students who are less fortunate. This belief further aligns interpersonal education and skill development as supplementary or unique to a specific target group or special population, and thus not a significant component of the main educational reform event and educational initiative of program improvement. Because of the strong belief in interpersonal skill development, agricultural education integrated interpersonal education within the activities of the FFA. These activities are intended for all students, and not one special population.

It would be inappropriate to think of agriculture and agricultural education as focused only on the development of products. Agriculture deals equally with business and services which are interpersonal in nature. Interpersonal skills in agriculture are global in value and should be universal expectations of all students in agricultural education and products are needed globally, and the interpersonal skills and cultural sensitivities necessary to market them worldwide dictate that the skills must be present in the educational program, or other educational institutions. As a fundamental principle, the teaching of interpersonal competencies should be included in every secondary and post-secondary agriculture education program.

Conclusion

Generally, agricultural educators have embraced and adopted the concept that interpersonal skills should be developed in their students in the agricultural education program. We must continue to promote the development of interpersonal skills as part of "being employable" if we want our students to become successful in the workforce. Agricultural education can continue doing so by deliberately including activities in classroom instruction, through supervised agricultural experiences, and through participation in FFA activities.

References

Preparing Teachers to Teach Agriscience
(Continued from page 4)

would require teacher educators to model effective agriscience instruction. In essence, they would return to the "front line" to teach technical content, as opposed to the usual challenge of guiding students how to teach technically.

In this case, they would teach both the methods and the content. Teaching such a course would no doubt boost the confidence and expertise of teacher educators as they continue their work of preparing high quality agriculture teachers.

Summary
As secondary agriculture curricula have continued to become more science-based, the need to prepare and update teachers in the technical and pedagogical dimensions of teaching agriscience have also become greater. These needs are primarily due to the inadequate and/or inappropriate preparation of teachers for teaching agriscience. The study of science in university programs has generally not enabled students to develop a working knowledge of science. Teacher educators cannot assume that completing a collection of traditionally framed agriculture and agriscience courses will result in a teacher candidate who is well prepared to teach agriscience.

In pre-service programs, teacher educators need to do more than place students into a series of traditional content area courses. Even when these courses are well taught, they still miss the mark in terms of explicitly teaching agriscience pedagogical practices as applications of science. In addition, the teaching of science concepts is seldom extended to studying these concepts and principles as they are applied in technological fields such as agriculture. Thus, teacher educators need to step forward to ensure that specialty designed courses are offered that directly focus on enabling students to effectively teach agriscience. These courses must address both the technical (What should I teach in agriscience?) and the pedagogical (How should I teach agriscience?) aspects of teaching agriscience.

A number of options can be considered for improving the readiness of teachers for teaching agriscience. At one extreme, teacher educators can rely solely on cooperating teachers to prepare teacher candidates for teaching agriscience. However, this option is unlikely to result in well prepared teacher candidates across the board. Team teaching a specially designed course with content area specialists could clearly boost the preparation of undergraduates for teaching agriscience. But the logistics and related problems associated with this option will limit its implementation in most universities. The best options require teacher educators to develop and teach instructional modules and/or one or more special courses in "Teaching Agriscience." Modules could be infused into the existing sequence of Agricultural Education courses, whereas a new course could be added to this course sequence. In the latter scenario, students would take such a course after they have completed their basic study in the sciences and agriculture but before they student teaches. The design of the "Teaching Agriscience" course is all important. Its content should be oriented around major agricultural systems and the agricultural practices intrinsic within each of those systems. Then, the biological and physical science concepts and principles that serve as the foundation for these agricultural management practices must be identified and taught. Instruction in this "Teaching Agriscience" course should be laboratory based and predominantly taught via experimentation. Problem solving and student inquiry approaches to teaching should be used. Teacher educators teaching this course must model effective methods for teaching agriscience. A similar version of the course, as well as an advanced course, could be taught to practicing teachers in the field.

University agricultural education faculty must take the initiative to design and teach one or more courses that address the content and methods of teaching agriscience. Until teacher educators directly address the needs of pre-service and in-service teachers for teaching agriscience in a substantive and systematic way, the quality of agriscience instruction in secondary programs will vary greatly and continue to be unclear.

References
Is Agriculture Making the Grade in Your Agriscience Program?

Directions: Grade your performance for keeping agriculture in agriscience. Circle the letter of the grade you deserve.

<table>
<thead>
<tr>
<th></th>
<th>Never</th>
<th>Seldom</th>
<th>Sometimes</th>
<th>Mostly</th>
<th>Always</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>Agricultural applications are discussed in classroom instruction prior to student experiments/activities.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>The percentage of students with SAE's is as great in agriscience classes as other agriculture classes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>The percentage of students in agriscience classes who join FFA equals that of other agriculture classes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>Students in agriscience classes are given equal opportunities for participation and achievement in the FFA.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>I keep current with new agricultural technology by reading agricultural magazines, journals, and newspapers.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>I include resource speakers and/or field trips to agricultural businesses in agriscience classes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>I include information on agricultural careers in the curriculum for my agriscience classes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>Students are required to write about agricultural applications of science concepts in lab reports.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>A problem-solving approach is used in agriscience classes with real problems encountered by producers.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>Quizzes/tests include questions on agricultural applications of science concepts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How did you do? If you earned an A-B average, congratulations. You’ve successfully developed an agriscience program with the proper perspective on the importance of agriculture in agriscience. I encourage you to share how you teach with others in the profession. If your average for the ten statements is barely passing, I encourage you to pick one or two of the statements and go for the A next year. By keeping agriculture in agriscience, we will all be keeping a bright future for agricultural education.