Leadership for the Teachership: Remaining on the Cutting Edge

As reflected on the theme for this issue of The Agricultural Education Magazine "Innovations in Teaching," several thoughts came to mind. I, like many of you, just returned from an annual vocational educators' summer conference. After 29 consecutive years of attending the conference, I was amazed at how much I have learned. What did I hear? What was done? What does it mean? Many things happen as a matter of tradition; the welcoming of new teachers to the profession, the recognition of outstanding accomplishments and excellence in teaching, the sharing of ideas, the interesting debates about everything from soap to nuts, and the general camaraderie which adds to the grand spirit of the profession as a whole. One statement that I have heard at almost every summer conference or professional meeting of agricultural education I have attended goes something like this, "This is the most exciting and challenging time in the history of vocational education!" I asked myself, "How can this be?" Every year is the most exciting time in the history of agricultural or vocational education! Is that statement redundant or superfluous? Probably not, if one reflects for a moment; I guess the statement is true. Our world, nation, states, local communities, schools, families, and society as a whole are in a constant state of adapting and keeping up with rapid change. The challenge of this change makes each new year the most exciting and challenging time in the history of agricultural education. Whether we like it or not, change is all around us and we know, change is not easy, and, in many cases, we resist it. It has been said that the only human being who appreciates change is a wet baby. If we choose not to be a part of the process of change, we will be left behind. Change requires us as members of the profession to be innovators.

So, back to the theme for this issue of The Agricultural Education Magazine "Innovations in Teaching." Some synonyms for the word innovate are: change, invent, modernize, retool, and transform. These are powerful words for all of us in agriculture and education. I asked myself, "Could we be some logical approaches to the theme?" An idea kept recurring in my mind. Each year the "profession," which in my mind is the broad or extended family of agricultural education, recognizes outstanding individuals. At our annual and regional meetings of NVATA, NASAE, AAEA, and PFA, individuals have been recognized who have made significant contributions to the profession and the students with whom they interact on a daily basis. An assumption is that these individuals are outstanding teachers, they must be innovators, they must be inventors, and the list could go on. So my questions were: What is it that they do? What do they believe about teaching, learning, and motivating students? What do they do in their programs that is unique? What do they believe about their programs? What do they believe about what they teach? What do they believe about their students?

In this issue are some of the reflections, ideas, and beliefs of some of our outstanding teachers. The innovators—those who are on the cutting edge, they are part of the "Leadership for the Teachership." Some interfering synonyms for the word leadership are: direction, guidance, and instruction. Yes, "instruction." How interesting! The word teacher is synonymous with the word leader. So our teachers, and that means all of us, must provide the leadership for the teachership, so that agricultural and vocational education is on the cutting edge. I have always said that the word leadership means "Responsibility in Service to Others." I sincerely believe that is what we are all about as agricultural educators.

As leaders and teachers we must accept the responsibility for:
1. Exemplifying attributes which actively demonstrate appreciation, caring, and love for students.
2. Having high expectations of students and ourselves.
3. Planning and preparing interesting, student-centered lessons.
4. Presenting instruction with enthusiasm.
5. Effectively managing our classrooms and our students.
6. Effectively managing and organizing our vocational programs.
7. Making timely decisions and developing patterns of behavior which use time efficiently.
8. Maintaining a positive image of ourselves.

By John P. Mundy
Dr. Mundy is an associate professor of agricultural education at the University of Minnesota.

The AGRICULTURAL EDUCATION MAGAZINE

September 1995

Volume 68
Number 3

Table of Contents

 Theme Editors' Comments
 Remaining on the Cutting Edge .. John P. Mundy 3
 Theme Articles
 I Don't Just Talk At My Students - They Are Involved Timothy J. Rollins & Vickie T. Leszy 4
 And the Walls Came Tumbling Down: Innovations in Teacher Preparation .. David C. Whaley, Corrine Mandle-Bromley & Jerry Weiser 7
 Educational Secrets ... Jack F. Elliott 11
 Lone Star SAF Innovations ... Craig Edwards 14
 Are We on the Right "Track" .. Richard Mekse 17
 Agri-Science Camp Spells Ag-Citement! Bret R. Ivenson & Robert A. Martin 19
 Looking Through a Window of Opportunity Clark W. Hanson 20
 Observe Theory in Practice ... Vernon D. Laft & Gregory W. Thompson 23

ARTICLE SUBMISSION
Articles and photographs should be submitted to the editor, Regional Editors, or Special Editors, limits to be considered for publication should be submitted at least 90 days prior to the date of issue intended for the article or photograph. All submissions will be acknowledged by the Editors. No items are returned unless accompanied by a stamped, self-addressed envelope. For news, problems, and ideas about the author(s), two copies of articles should be submitted. A recent photograph should accompany the article unless on file with the editors. Articles in the magazine may be reproduced without permission.

PUBLICATION INFORMATION
The Agricultural Education Magazine (ISSN 725467) is the monthly professional and journal of agricultural education. The journal is published for The Agricultural Education Magazine, Inc. and produced by Journals Foundation, Inc. M & D Publishing, 505 Second Street, Harleysville, PA 19438. Second-class postage paid at Mechanicsville, MD 20651. Address changes must be received by April 15 prior to publication. POSTMASTER: Send Form 3579 to Glenn A. Anderson, Business Manager, 10171 Southern Blvd., Mechanicsville, MD 20651.

SUBSCRIPTIONS
Subscription prices for The Agricultural Education Magazine are $20 per year for full-time teachers, and $40 (U.S. currency) foreign, including 10% Canada. Teacher subscriptions in groups of ten are $18 per year for issues and $16 for back issues. Single copies and back issues less than two years old are available at $1 each (U.S.) in foreign. All back issues are available as microfilm and microfiche from the Library of Congress. Additional subscription rates: Foreign, except Canada, 10% (1953-1965), 10% (1966-1970), 10% (1971-1975), 10% (1976-1980), 10% (1981-1985). Address changes must be received by April 15 prior to publication.

THE AGRICULTURAL EDUCATION MAGAZINE

September 1995
I Don't Just Talk At My Students - They Are Involved

by Timothy J. Rollins & Vickie T. Lantz

The Setting

Vickie T. Lantz just completed her seventh year teaching in a single-person agricultural program of approximately 55 fourth and fifth grade students in a four-year high school of one thousand students in Newville, Pennsylvania. Newville used to be more of a farming community, but, like so many others, it is slowly becoming a bedroom community for a larger city, in this case the state's capital, Harrisburg. Although moderate-sized dairy farms comprise the largest sector of agriculture, Moonstone and Amish farmers are developing vegetable and crop farms as well.

Several years ago, agriculture classes at Big Spring High School were two periods long, but academically-inclined students attracted to the agriculture program couldn't enroll for both periods. So, Vickie sequenced single period classes (Agricultural Mechanics I, II, III, and IV and Agricultural Technology I, II, III, and IV) where juniors and seniors were together in alternate years. She teaches carpentry, welding, electricity, plumbing, and small gas engines in agriculture mechanics classes, and in agricultural technology classes, Vickie teaches food science and environmental science, along with plant and animal sciences, to ensure that juniors and seniors do research projects. Underclassmen give up a study hall or an elective to take an agriculture class since there are only seven school periods. Students enrolled in agriculture for four years receive one science credit toward graduation.

Two years down the road, Vickie anticipates changing to a "flex schedule" consisting of four 75-minute periods with a 50-minute period in the middle of the day. Vickie has rewritten all the older curriculum since she started teaching; while it is both good and bad, it's frustrating because she's constantly writing new lesson plans and new curriculums. In a different breath, however, she admits that it helps to keep her young, alive, and not get stagnant. "Maybe that's one of the things that helps the program - we don't ever do the same thing over and over," she surmised. "I'm not afraid to change, and I'm not afraid to show the students that I'm a human being."

The Interview

What do you believe about motivating your students? How do you motivate students?

Some of the things I do in terms of motivating students relate to my beliefs about teaching. I'm very student-oriented, so I try to ensure that students are gathering information. I love to have them teach classes, to get involved, and to come up with projects and ideas that relate to the curriculum. I don't do a lot of lecturing to students because I have them research the information they are interested in. I try to have them motivate each other and really get involved in what they're doing. If students are just taking notes and absorbing the information being presented, there is really no motivation and no reason for them to be there. As students ask questions, I will find they have a particular interest. I'll work with those students to get them to try something new or different. I know where I want them to be, but I don't force them to be there today or tomorrow. I know it takes time, but I'll show them how it can fit into what they are doing and how they can benefit.

Isn't it called motivation, very subtle, but in a very effective way? You think about where you want them to be, rather than say, "This is where you want to be, now get there!"; you let them come to realize that maybe this is something that they ought to be doing. And then, they get in and do it. So while it's subtle, it's effective, too.

I have some special needs students in my class program, too, but I don't ignore them either. They are leaders in the sense that they have the same responsibilities as every other student in my classroom. Although I may test them a little differently, I don't treat them differently. I treat them like they were any other student in my class, and I think they know they can succeed. I'll try to work with them, which is motivating for me as well. They know that they can come into my classroom and have fun succeeding.

Nobody is going to put them down because they don't know something or ask questions. I think students feel good about coming into my classroom, and that's another big motivation for me. I never discourage my students from trying and doing new things. I try to encourage them to be creative as they can be.

You mentioned letting your students do the teaching or doing the research and having them share it with other students. Do you think that's a special way of teaching?

My classroom is an open environment where I encourage students to get up and move around; I have a lot of different research books, as well as computers. It is their classroom, and they feel free to come in. For example, we have a telephone in the classroom; if they are doing research, they can use the phone to research a topic. The students can also use computers to prepare work for another class; it is a very open environment. The students know when they come in, they're not just going to sit there and absorb information, they're going to have a chance to do something, to be part of the learning process, and not just to be talked at. I think it happens in other agriculture programs around Pennsylvania, but here it's a special way of teaching.

Can you tell me about a few teaching methods you use or some that you have had success with?

Although I don't make students learn dates, I think they ought to be aware of them. One method I use is a "time-line", except instead of having them do it on paper, the whole class works together. We'll construct a ten foot timeline, three feet wide, and it will hang on my ceiling. Another example was when students completed an electricity unit, they were assigned to develop a cartoon or a safety poster on electrical safety; those are hanging on the classroom walls too.

Constant review is one method that helps my students learn well and be successful. We review what we did the previous day at the beginning of the next class period. I tie it in with what we are going to do that period. Although I'm not successful all the time, I think this is a strong suit I have in the way I teach. My courses aren't easy; it's just that we constantly review, always at the beginning and always at the end. I know it helps my students be successful because they have commented on it. They have mentioned how other teachers tend to move along, and they do not show them how everything relates.

How do you show your students you care about what they learn, how they learn it, and if they really know it?

Although I am in my seventh year of teaching, I still remember when I was in the middle of teaching a unit that I had hated it, and so we just stopped. I really had to take a look at what my students were doing, what their interests were, and who they were. I think teachers ought to take this into consideration. My students see me not just as a teacher, but as someone who is trying to do her best to do what is right for them and by them. They know that I have taken the time to make sure that they've learned it. One student commented, "Other teachers don't care that we are learning it. They're just there to get information into our heads, and the teachers don't care." They get the feeling that I care, and that's important to students.

I am not afraid to talk to my students about their futures and how what they are learning is class in line with what they want to be. My students see me not just as a teacher, but as a person. I have been to dinner at some of my students' houses, I've had FFA officers over for meetings, and I have had students study for a contest at my house. I will come in to school early in the morning, stay until late at night..."
And the Walls Came Tumbling Down: Innovations in Teacher Preparation

My own experience in schools was no longer sufficient to understand the teachers’ point of view, and the public school teachers with whom I had contact regularly reminded me of it. They would sometimes discount my views of public education, taunting me with, “You people from the university don’t understand the real world of the classroom! When are you going to leave your ivory towers and get out in the trenches?”

L

istian to the whistles of preser-
vise students enrolled in our univer-
sities’ teacher education programs, and you are likely to hear murmurs of discontent: “It is not reality.” “My college teachers haven’t been in the public school classroom in a very long time.” “Education classes are busy work—they lack challenge,” and “There is a lot of overlap and repetition.” In spite of these con-

cerns, however, our new teachers regard their preservice training as the most critical ingredi-

te for launching a successful and long-lasting career in education. Certainly, if the value of the

preservice experience is so important, shouldn’t it the very best opportunities be afforded to

students in their quest for superior preparation?

Recently, the call for reform of teacher edu-

cation has been heard from a myriad of stake-

holders: The American Federation of Teachers,

The American Association of Colleges for

Teacher Education, The Holmes Group, The

National Education Association, etc. Advocates of this reform suggest that partnerships

between university teacher education pro-

grams and the public schools may enhance the

preparation and efficacy of new teachers.

These partnerships are often referred to as

“professional development schools.”

The concept of the professional development school (PDS) offers to appear one venue for the much-needed creation of preservice pro-

ducts. Originally conceived by the Holmes

Group (1986), the PDS “represents a partner-

ship between the teacher preparation institu-

tion and a public school that seeks to improve

teacher development (preservice and inservice) and to contribute to the research and develop-

ment of the teaching institution.” (Mantle-

by and Blocker, 1995).

The PDS model strives to empower the teacher preparation process by linking more closely educational theories with the practice of teaching, by actively involving university teacher education faculty and students on-site in the public schools, and by forming a collaborative professional team of university and public school faculty committed to the quality preparation of new teachers.

Traditional teacher education programs are generally constructed with the essential build-

ings blocks of on-campus professional education coursework, introduction to education, educational psychology, teaching classroom reading, methods of teaching), a part-time clinical/practicum experience in the public school system, and a culminating full-time student teaching semester. Micro-teaching (or “prac-
tice” teaching) is usually integrated into the professional education coursework and, most often, occurs in a carefully managed, on-campus setting to a group of college peers.

In the professional development school model, education coursework is often delivered to teacher education candidates at a public school site by university faculty and teachers in that public school. Practicum experiences are co-sponsored and managed cooperatively on-site in the public school by these same university and public school faculty. Practice teaching occurs directly within the public school class-

room and exposes the teacher-trainees to “real” students in “real” situations.

It has been estimated that there are approximately 125 professional development schools nationwide (Adkla-Haig, 1992). The research on PDS reveals a number of significant bene-

fits for those involved in these programs. Public school teachers participating in PDS programs have verbalized a sense of increased professional status, a decreased sense of isola-

tion from other professional educators, height-

ed feelings of collegiality with their school faculty and with the cooperating university facul-
ty, and an eagerness to participate in self-improvement activities such as applied research and reflective teaching. These teach-

ers are also more likely to view preservice can-
idates in teacher preparation programs as co-

teachers, and to transfer the teaching skills and processes, instead of as guests in their classrooms.

Preservice students in PDS programs →
School faculty, with the cooperation of university faculty, to share in the facilitation of the student organizations course and the vocational methods course added a feature of shared responsibility for the success of the preserve teacher education program. Finally, the willingness of the university teacher education faculty to partner with the high school faculty in providing workshops on topics such as effective teaching, applied research, and reflective teaching, created an enthusiastic and mutually supportive beginning for this PDS. Certainly, the agricultural education faculties were enthusiastic about providing enhanced training opportunities to preserve students using the high school’s equipment and facilities. The promise of the professional development school partnership offered increased opportunities for all stakeholders.

Project planners were able to secure a small grant from the Goals 2000-Educate America Act (Center on National Education Policy, 1995) to initiate the planning processes for the professional development school. Planning sessions were held during the 1995 summer session to develop a comprehensive plan and master calendar. These timelines and activities are described in Table 1.

Potential outcomes of this plan include faculty exchanges between Colorado State University and Valley High School, the enhancement of staff development opportunities for both faculties, opportunities for strengthening the integration of academics and vocational education at the high school, more preserve students and university faculty on-site at Valley High School, and opportunities for establishing a continuum of preserve experiences from part-time practical/clinical experiences through full-time.

Table 1: Implementation plan for professional development school (PDS) partnership between Valley High School and Colorado State University

<table>
<thead>
<tr>
<th>Date</th>
<th>Spring/Summer 1995</th>
<th>Fall 1995</th>
<th>Spring 1996</th>
<th>Summer Session 1996</th>
<th>Fall 1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
<td>Comprehensive planning by faculty</td>
<td>1. Planning (cont.)</td>
<td>1. Part-time practitioners begin placements at Valley High School.</td>
<td>1. Part-time practitioners continue on-site.</td>
<td>1. Part-time practitioners continue on-site.</td>
</tr>
<tr>
<td></td>
<td>2. Assessment of PDS experiences and acceptance by all stakeholders: a. Faculty</td>
<td>b. Preserve students</td>
<td>c. High school students</td>
<td>d. Community partnerships (parents, etc.)</td>
<td>e. Community partnerships (parents, etc.)</td>
</tr>
<tr>
<td></td>
<td>3. Session offered on-site for vocational pre-service students</td>
<td>Planning and evaluation</td>
<td>3. Session offered on-site for vocational pre-service students</td>
<td>4. Staff development workshop in mentoring offered by faculty from VHS and CU</td>
<td>5. Vocational course in occupational course offered for vocational pre-service students.</td>
</tr>
<tr>
<td></td>
<td>4. Staff development workshop in mentoring offered by faculty from VHS and CU</td>
<td>6. Applied research efforts begin by VHS and CU faculty</td>
<td>7. Evaluation of PDS efforts</td>
<td>8. Staff development workshop in mentoring offered by faculty from VHS and CU</td>
<td>9. Vocational course in occupational course offered for vocational pre-service students.</td>
</tr>
</tbody>
</table>

Notes:
- The plan is designed to be flexible and adaptable to the needs and circumstances of the participating institutions.
- The use of comprehensive planning and continuous feedback loops is intended to ensure that the project remains responsive to the evolving needs of the partners.
- The focus on practical and clinical experiences is intended to provide students with hands-on learning opportunities.
- The inclusion of community partnerships is aimed at building a supportive network that can extend the impact of the project beyond the school setting.
- The plan is intended to be a living document, with ongoing evaluation and adaptation to ensure its success.

References:

Acknowledgments:
- The authors would like to thank the support from Colorado State University and Valley High School for making this partnership possible.

Author:
- John D. Smith, Education Coordinator, Colorado State University, and Level 1 High School (a collaborative apprenticeship program)
Leadership for the Teachershps

(Continued from page 4)

9. Maintaining facilities in a neat and orderly fashion.
10. Being an active, dues-paying member of our professional organizations - one who invests not only dues, but one who gives of their time and talent to the organization.

The French theologian, Teilhard de Chardin said, "The future belongs to those who can give tomorrow's generations valid reasons to live and hope." As members of the profession, let us commit ourselves to providing "Leadership for the Teachership" so that Agricultural Education will remain on the cutting edge. Then we can say as teachers, "We have given future generations valid reasons to live and hope."

I Don't Just Talk At You Students

(Continued from page 8)

When your principal, superintendent, or peer talk about Mrs. Vicky Luntz, what makes them think of you as an outstanding teacher? Some of it is dedication. Having been a state FFA officer and working during summers and the school year in the Agricultural Education Department at Penn State University, I know who I need to see, where I need to go for information, and that's a definite advantage to both my program and students. I talk to them about that little and try to get them to see that some of the things I do ultimately will help them in the end. I really believe in agricultural education, in the FFA, and in what we're doing.

I try to provide my students with many different kinds of learning situations and experiences. For example, some of my students attended a school board meeting and presented a wildlife booklet for elementary teachers. They made the presentation to the school board, not me. When the FFA chapter needs to use the school facilities, the students are the ones who make the arrangements.

There are instances when no one organized to my students why they're in my class other than to get a job after graduation. These students feel they will definitely have something concrete when they leave here. I have had my share of student behavior, too. So I think they would say that I'm very dedicated, they see me at school all hours, and I am always doing a lot of teaching. They care about my students, and I think it shows.

Educational Secrets

Christy Smith and John Morgan share some secrets of teaching with Jack Elliott. Read their responses and incorporate the feasible ideas into your own teaching techniques. It is interesting to note that many of their comments revolve around the process of teaching and not content.

Mr. Smith teaches at the Carl Hayden Center for Agriculture in Chino Valley High School and was selected as the 1993 NACTA Outstanding Young Teacher.

1. Elliott: What is good teaching?
Smith (S): Good teaching is teaching that incorporates a variety of methods that include experiential learning or "hands-on" experiences. Teachers should be prepared each and every day with a plan that promotes organized, sequential learning. Good teaching is interesting and encourages students to learn.

Morgan (M): Having the ability to change someone into a productive, hard-working citizen.

2. What motivates you to excel?
S: Watching students achieve and learn things they never thought they'd be capable of. It is also very motivating to have my students and myself recognized by our peers.

M: Diversity.

3. What is your favorite teaching memory?
S: That is a really difficult question. Recently, I developed an extremely difficult essay exam to test my advanced students on what they had learned in the agricultural biotechnology program and how they could apply that information to related questions. They could have all blown it off since they have all done so much extra credit this year it probably would not have affected their grade. Instead, not one of them failed, in fact, the lowest grade was a C. They answered questions with accuracy and eloquence. I graded those tests as if they were in the 10th or 12th year of college. They didn't do it because they had to, they achieved it at that level because they wanted to. It was a very satisfying feeling.

Of course I could tell you of the many children that would not have attended college had it not been for the scholarships they earned for the research they accomplished in this program. I could also tell you of the students that come to school every day just so they can be involved in agriculture. They are all good memories.

M: Assisting in the education of a "special needs" student who was speech impaired. He went on to be a state degree, state proficiency award, and state winner in youth Tall Tins and was placed in a private welding firm position.

4. How do you motivate students?
S: At this point in time, I have the luxury of knowing all of my students and their families on a personal level. The students I have right now have been with me for a long time, and I believe they have stayed because they enjoy the environment and they are getting something from the program. They are such a close peer group that they encourage and motivate one another. When this kind of student intimacy does not exist, traditional motivators such as award programs, positive verbal affirmations, reinforcement, scholarships, and job placement are used.

BY JACK F. ELLIOTT

Dr. Elliott is an associate professor of agricultural education at the University of Arizona, Tucson.
I'm excited—so they are excited (mostly).

5. Why do you believe that you were recognized as an outstanding teacher (remember your peers felt you deserved the award)?

S: For successfully implementing “cutting-edge” technologies into agricultural curriculum.

M: The successes of the program including students and awards and facilities that have been designed and implemented.

6. What do you believe about the following?

a. motivation?

S: I believe all people are motivated by different things. As a teacher, I believe it is my job to discover what motivates each and every one of my students, then I can exploit that motivational technique to maximize the potential of those students.

M: I believe that it is probably the most important ingredient for success.

b. teaching?

S: I believe that teachers make a difference in the lives of their students each and every day. And, it is within the power of those teachers to make that difference a positive or negative one.

M: I believe teaching can play a key role in shaping the future of the planet.

c. learning?

S: I don’t think you can ever stop learning. It is the core of what we are and what we become. If you make a conscious decision to stop learning, why bother to go on? For me, existing is learning.

M: I believe learning should be ongoing. “The mind is a terrible thing to waste,” is an appropriate saying.

7. d. students?

S: I believe that students remember very little of the content they receive in secondary schools. They do remember experiences, attitudes, situations, places, things, etc. I am an experience facilitator.

M: I believe that students are only as successful as you let them be.

8. What is more important: teaching or learning?

S: Learning: individuals learn from everything not just from what they’re taught. I believe if all teaching stopped tomorrow, people would continue to learn from their experiences.

M: Both are important. They are somewhat unilateral. Teachers teach and learn, as do students.

9. What is it that you do?

S: I ask a past student, and he said that I should not answer this question, but that one of my students should. So, I asked one as she was walking through. She said, “Everything.” I guess that’s somewhat true—depending on the day, I could be: teacher, chauffeur, counselor, mother, friend, chaperon, travel coordinator, coach, intern developer, advisor, or a myriad of other things.

M: I teach mechanics, biotechnology, forestry, aquaculture, leadership, you name it. I believe in a diverse program that provides education beyond the secondary level.

10. How is the most unique aspect of your program?

S: Due to the structure of our program.

the teachers at Carl Hayden have the ability to develop highly specialized programs. I believe that we have the most advanced agricultural technology program in the country. My students are conducting research that has been recognized/published on an international level, and I constantly change the curriculum to adopt emerging biotechnologies as they are developed. I can honestly say that I never took a class (even in college) that exposed students to as many scientific experiences as this program does.

M: Renewable resources which include: aquaculture, biotechnology, wildlife management, and forestry.

11. What is the most unique aspect about you as a teacher?

S: I purposely encourage “non-traditional” agriculture students to participate in agricultural education. I have had some agricultural educators tell me that my kids were freaks just because they don’t wear boots and jeans, and they don’t even know what a can of Copenhagen looks like. By increasing the diversity of our student populations, I believe agricultural education can continue to grow with our nation.

M: Energy.

12. What do you believe about your students?

S: I have the best students in the world. They are devoted to experiencing life. And while sometimes rearranging their priorities to what might not be the socially accepted standard, they accomplish and grow continually.

M: They can be successful with a little push.

13. Is there a good future for young people who want to follow in your footsteps (i.e., be a teacher)?

S: As long as a free education remains a constitutional right, there will always be teaching jobs. Teaching offers great rewards and great disappointments. It is a bureaucratic mass of pitfalls and dead ends.

M: Absolutely—we need good agricultural teachers who are hard working, energized, and visionary.

14. What is your most inspiring moment as a teacher (why)?

S: Watching the same student that won the CARGSEF Sweepstakes, experiencing severe emotional problems, and then get pregnant in her senior year of high school.

M: The inability to do it all. Too many other areas crop up which need attending to.

15. What was your most encouraging moment as a teacher (why)?

S: Sitting in the AS Activity Center with 542 science fair competitors at the Central Arizona Science & Engineering Fair. I mean, the real BIG DODS of science were competing, and one of my agriculture students won the Sweepstakes for the whole thing. Then we both got to travel to New Orleans to compete internationally.

M: Receiving a grant for aquaculture, I knew it would revolutionize a stagnating curriculum.

16. What are your reasons for becoming a teacher? Who influenced you? Would you do it again if you had to do it over again?

S: I would not give up the last six years of my life for all the money in the world. I was influenced by participating in 4-H. 4-H provided me with direction, a chance to travel, and eventually a full scholarship to U of A. I wanted to help direct and motivate young people. I wanted to give something back to the industry that gave so much to me.

M: The diversity of an agricultural curriculum, and I enjoy working with high

Introduction to Biotechnology student Ty-Juan Sweezy is shown here working on plant culture. (Photo courtesy of Christy Smith.)

Amy Coppenot and Cory March hold a gel in an electrophoresis unit to perform a DNA analysis laboratory exercise. (Photo courtesy of Christy Smith.)

Christy Smith is the agriculture instructor at Carl Hayden Center for enrichment. (Photo courtesy of Christy Smith.)

(Continued on page 16)
Lone Star SAE Innovations

Introduction

Energy and environmental technology, wildlife and recreation management, floricultural design, entrepreneurship, and personal skills are developed in agriculture, yes in Agriculture. What is even more astounding to some of us the fact that these courses grace the curriculum in Texas, and Texas (the state of cattle, cotton, and conservancy). What can occur as another shock to those of us that may have been rearing for the last decade or so is that we were not in the rear-guard on these curricular innovations but out in front on the "cutting edge", taking our share of the cuts and scribes. Some would argue that these changes were merely slight twists and minor turns on the old curricular paradigm, a.k.a. the broad umbrellas of "production agriculture". Yes, no, "kinda (sic), sorta (sic), maybe"? From a purely personal perspective, the previous curriculums appeared to be "a mile wide and an inch deep" while the "new and improved" version can seem so quasi-related that it borders on the outer fringe of the universe we call agriculture. The truth, as with most truths, can probably be found somewhere in between.

This baptism, like most, was eventful, daunting, and in certain respects, incomplete. Specifically, what is the new, often "non-traditional" students/citizens? Do these courses and others like them attract; and, more precisely, what of their Supervised Agricultural Experience (SAE) O" Programshell; lies a quandary, at least for this Texas agiscience teacher, and I suspect I have a lot of company.

SAE Program at Klein Oak High School is one of three high schools in the Klein Independent School District, and serves an enrollment of approximately 2,500 students each year. Of this number, close to two-thirds will conduct a more or less "traditional" animal/plant project program, or "production enterprise". The projects will be almost exclusively "show oriented", with the objective of being their exhibition at our local school district project show. These projects go a long way toward meeting the student's state mandated SAE requirement; depending upon course that the student is enrolled in, the student's previous course history, and the duration of the project.

Obviously, this begs the question, "What about the remaining one-third"? Excluding course-related agrisources work experience (employment) or pre-employment laboratory training, most of these students must meet their SAE requirement via "outside the classroom" applied activities. Meaning, activities conducted and completed outside the student's regular a scheduled class time that are closely related to the course in which the student is enrolled, and that serve to enhance and reinforce the course curriculum. This reality forms the premise for the following innovation: Judge it merits as you see fit, but please do read on.

SUPERVISED AGRICULTURE EXPERIENCE (SAE) PROGRAM
APPLIED ACTIVITIES AWARDS PROGRAM
Klein Independent School District (KISD) FFA Project Show

PURPOSE: The purpose of this competition/recognition program is three-fold. First, this event offers an opportunity for agriculture science students not conducting a "traditional" project a vehicle by which they can participate in and feel a part of the Klein ISD FFA Project Show.

Second, it affords them the chance to receive recognition for their efforts in carrying out "quality" applied activities while meeting the Texas Agriculture Education (TEA) mandated OUTSIDE OF CLASS SAE requirements for all agriculture science courses beyond the agriculture science 101 level (beginning with agriculture science 102).

Third, by both the judging of entries in this event and their subsequent display, a dimension of the agriculture science curriculum, which is often misunderstood and frequently underappreciated, will be presented to the general public.

It is hoped that this will be an educational benefit to the students involved, and that it will serve as a motivating factor for improving the quality of agriculture science students' SAE applied activities. In addition, it may serve as a window into the agriculture science curriculum, through which the public may better understand and appreciate the important role agriculture plays in our schools, communities, states, nation, and world.

SAMPLE RULES/GUIDELINES

1) All students entering projects in the applied activities awards program must be enrolled as FFA members in "good standing" with their respective FFA Chapter.

2) All students entering a project must have successfully completed (passed) the agriculture science course the SAE project pertains to, or currently be enrolled in a pertaining/related agriculture science course.

3) Projects must be the original work of the student entering the project.

4) The project must have been done outside of the regularly scheduled class time for the related course.

5) The project must be listed in an outside of class activity (with appropriate data: unit of instruction letter, and instructor assigned point value) on the student's SAE record book journal page. For this purpose, a copy of the student's record book journal page must be included with their applied activity entry.

6) Only one entry per student in each class division is permitted.

7) A student may enter as many different divisions as they are deemed eligible.

SAMPLE DIVISIONS

One-Sided Posters Three-Sided Posters Model/Display Reports Models/Mock-ups Mechanical Drawings/Schematics Portfolios

Summary of Interviews Demonstration Videos Letters Requesting Information Miscellaneous

SAMPLE AWARDS/RECOGNITION GUIDELINES

There shall be a class in each division representing each different agricultural science course taught during the current school year. First, second, and third place entries in each class will receive ribbons. Class winners will compete for division champion. Each division champion will receive a plaque.

The Grand Champion will be selected from the division winners. Reserve Champion will be selected from the remaining division winners, and runner-up from the Grand Champion's division. Grand Champion will be awarded a trophy/belt buckle, and Reserve Champion will be awarded a trophy.

SAMPLE SCORING REPORTS

Student Name ____________
Report Topic
Course
State: Report topic MUST pertain to the class/course for which the student was enrolled.

SCORING CRITERIA:
I. Content (fitness with which subject matter is addressed, accuracy, completeness, etc.) 40%

II. Grammar (capitalization, punctuation, sentence structure, and spelling) 20%

III. Interest Arrows in Reader (left wanting to know more about the subject, etc.) 20%

IV. Professionalism of Text (free from typographical errors, appropriate use of references, citations, footnotes, etc.) 20%

Total (100%)

Judges Comments/ Suggestions/ Observations

Conclusion

Well, there you have it, with all it's limitations and shortcomings. It is not perfect, and we continue to tinker and make adjustments. In the two years that the SAE Owed Activities Award Program has been implemented as a part of the Klein Independent School District FFA Project Show, both entries and interest have grown. Parents and school administrators alike have commented, "I didn't know my child could do something like this in Ag," or, "I didn't know)}
Educational Secrets
(Continued from page 17)

School students. Frank Molina was my greatest influence - streamlined me out - made me see secondary level a little better.

17. What is your greatest success story as a teacher?
S: I had a student who came from an illiterate family, neither her mother or father could read. Her father was a diesel mechanic, and the family lived in the shop, sleeping on a dirt floor. This kid worked a full-time job, went to school, participated in sports, and completed an agriscience research project. Her parents continually held her back, refusing to sign scholarship applications. Because of her agriscience research project she was awarded a full 4-year scholarship to Arizona State University.

I am also very proud of the fact that we have the only commercial multi-propeller lab in Arizona, and it is operated by students.
M: High student placement in college and the work place upon graduation (42% college, 100% college or work).

18. What is the most important advice you could provide a young person entering teaching?
S: Be resilient, innovative, organized, and never stop learning!
M: You've got to be tough - yet compassionate and sensitive to the needs of others. It's a tough combination, but essential for productivity.

19. What is the secret to being a successful teacher?
S: Just accept that EVERYTHING is your job. If it's not in the job description, and it's good for kids, DO IT ANYWAY.
M: Being yourself. It's okay to make mistakes and show your real self to students. They'll respect you more in the long run.

20. What is one word that describes you as a teacher?
S: Ambitious.
M: Motivated.

21. What are your most enjoyable and least enjoyable aspects of being a teacher?
S: Most Enjoyable - Working with anyone who wants to learn. Least Enjoyable - Pointless meetings, paperwork, and paperwork.

About the Cover
Inservice education offers agricultural educators opportunities to develop new ideas for increasing student achievement. The projects shown on the cover are conducting a soil analysis for microminerals in a horticulture workshop offered to Idaho agriculture instructors.

(cover photo courtesy of John P. Mundt.)

Are We On the Right “Track”?

During the past several years, there has been considerable effort put forth by various State Department of Public Instruction personnel, some University staff members, and fellow instructors in leadership positions to change traditional and/or typical vocational agriculture (agricultural education) programs from production emphasis to an agribusiness and/or “high tech” emphasis. There have been numerous publications and presentations of all which infer that unless the agricultural education programs become more technology oriented, students will avoid enrolling in these electives and agricultural education will be phased out of the school curriculum.

These advocates of “high tech” also imply that the traditional “vocational agriculture” programs of the past twenty-five years have offered students experiences that have bordered on obsessionism, been somewhat useless, nonfulfilling, non-challenging, non-exploratory, repetitious, uncreative, non-problem solving, and generally lacking in quality. Nothing could be further from the truth in a quality agricultural education program.

Having taught agricultural education over the past twenty-three years and having been involved with our professional association in various positions has given me the opportunity to observe what I consider many excellent programs; offering the student participation in a broad base of agricultural education subject matter both in the classroom and through the FFA. Both phases of the program are providing relevancy to students’ vocational and avocational needs. However, this does not imply that change is not in order! Quite the contrary, change is in order in our curricular offerings; but perhaps these changes are most accomplished by subtle, on-going modifications, not drastic revisions usually suggested by the proponents of “high tech”. We should not suddenly throw out the well-developed, traditional agricultural education programs, replacing them with “high tech” and science oriented offerings. The word “technology” is certainly not new to our vocabulary; consider the change from slate rule to calculator, and the change from typewriter to computer. These improvements and a host of others represent technological change, but not everyone everywhere accomplished them suddenly.

With computer technology advancing so rapidly, I would advocate a more gradual, analytical approach to agricultural education curriculum changes, while keeping much of our traditional subject matter and course content. The traditional material is still very applicable and timely with respect to individual student needs, current society needs, and economic demands.

Today’s graduates are competing for positions that are more “service” related versus “high tech”. Approximately sixty to fifteen percent of today’s graduates are needed in the high tech industries. According to the American Forecaster by Long and Reim (1960), “current occupational statistics indicate a trend of shifting jobs from manufacturing to the service industries in the United States.”

In light of the above trends, I believe we should continue to offer our “traditional” agricultural education students the basic knowledge and skills development in animal science, plant science, mechanics, supervised experience programs, record keeping, and leadership. We must, however, integrate the newest technologies into existing curriculum where it improves and enhances the subject matter being taught. Several years ago in the state of Wisconsin, a study was conducted called the “Faker Project”. The bottom line of that study showed that employers desired to have prospective employees come to work with a solid understanding of the “basics” within their area of specialization and have a desirable work ethic including: being punctual, trustworthy, dependable, honest, and demonstrating self initiative. The businesses would train the individual for specific job skills that they would need to succeed in their position.

Terms such as “High Technology”, “Tech Prep”, “Education for Employment”, and “School to Work Transition” are confusing and need to be clarified and unambiguously defined. All of these terms sound great, but what, specifically, do they mean? It appears to this author that each of the initiatives should be supported by sound objectives and more importantly a listing of teacher/student activities which would facilitate and accomplish...
these obstacles and inspire students than any other program in the school system today.

As teachers and advisors, we must continue to share our knowledge and educate our students. We must continue to value student activities enough to allow all students an opportunity to make such activities a viable part of their lives. We must be willing to lead and teach students who make honest mistakes as they learn. We must remember, when people are committed and enthusiastic, mediocre results are the greatest threat for me, as an instructor, is to see any
growth enter into the program, witness their personal growth, and finally see them as mature self-confident graduating seniors who know what options lie before them after high school.

Over the past twenty-three years, I can honestly say that all of the programs and activities that Black Hawk Agriculture Program/FFA has ever sponsored or been involved in has been done with the intent to provide an opportunity for students. No activity was ever conducted for the purpose of an award supplement. Students make the final decision on what programs are sponsored each year. Ideas and suggestions are derived from student involvement and has helped the Black Hawk Agriculture department become what it is today. The program has expanded and changed, adding courses in natural resources and biotechnology.

In conclusion, it seems to me that at the middle and secondary school levels, we should continue to provide viable agricultural education (vocational) programs. We should place a greater emphasis on developing certain characteristics in our students such as:

- positive attitudes in accomplishment and creative achievement
- a good work ethic
- skills and problem solving capabilities
- pride in workmanship
- a desire to continue their technical education in post-high school institutions

I am fully confident that agricultural education/FFA programs within our schools will continue to provide "grass roots" education and training that will be beneficial for all students involved. A goal of mine would be for all students to have exposure to the agriculture curriculum while in middle school so that preliminary career pathways can be chosen and students be prepared to expose and be school to work transition. Agricultural education continues to be, and will always be, on "track" for our students.

References

Long & Rein (1986). American Forestry

Agri-Science Camp Spells Ag-Citement!

Have you ever experienced the excitement of a summer day camp? You can't wait for time to pass? You spend your time counting the days, hours, and minutes until the big day? That's how it feels to be a part of the Agri-Science Camp in Maquoketa Valley Community Schools in Iowa. All of the excitement is focused on what has become an annual event like no other of its kind. The Annual Agri-Science Camp represents an excellent way to build excitement into the study of agriculture. One could say that it is more than AG-CITEMENT. What is an Agri-
Science Camp? Why is it needed? How does it work, and what are the results? How can others do what Maquoketa Valley Community Schools did in Iowa?

What?

The Agri-Science Camp is a summer day-camp for fifth, sixth, and seventh grade students who may have an interest in learning something about agri-science. At D bel, Iowa, the day camp is sponsored by the Maquoketa Valley FFA Chapter and the Maquoketa Valley School District. The overall purpose of the camp is to excite and educate young people about agri-science in a fun atmosphere using learning by doing techniques. The specific goals of the camp are:

1. To expose fifth, sixth, and seventh grade students to the agricultural sciences.
2. To apply math and science principles to agricultural settings.
3. To develop new science lab activities for the agricultural education program.
4. To improve the image of agricultural education in the community.
5. To help encourage young, talented students to enroll in the agricultural education program at some time in the future.

Why?

Middle school students have exposure to all kinds of educational programs. However, few, if any, of these programs, courses, or activities focus on agriculture. Eventually, middle school students must make decisions relative to the courses they will take in high school. Without exposure to the full range of possibilities, how will these children and their parents make informed choices? One of the best reasons to develop and conduct middle school agriculture programs is to help students explore career possibilities in agriculture. Conducting a summer day camp on agriculture also strengthens the need for a summer contract in agricultural education because the program is focused on teaching specific skills and knowledge.

How?

The camp is held at the Maquoketa Valley High School Agriculture Building. The annual Agri-Science camp is held in July over a five day period, and students are informed through a visit by the agriculture instructor at each elementary school center. A brief news story with an application is placed in the student newspaper in April, and a letter is sent in June to each student who applies for the camp. This letter explains to parents and students information on camp activities, field trips, and items needed by the students, including any special clothing.

Instructors, of course, need to decide for themselves the best length for the course and the best way to manage it. The camp at Maquoketa Valley operates from 8:00 a.m. to 2:00 p.m. except for an all day field trip, which may occur. The field trips and several activities are changed each year at Maquoketa Valley because some of the students want to repeat the experience from year to year. Costs vary from year to year and depend on the cost of transportation for field trips. The average cost is about $300 per person. Costs can be covered by student donations, FFA sponsorship, school support, and application fees. Maquoketa Valley has generally charged the participants for travel, food, and miscellaneous expenses. A variety of laboratory activities, which actively involve students in math and science, are essential for the success of the agri-science camp. The activities should be well-planned and written for the age level of

THE AGRICULTURAL EDUCATION MAGAZINE

SEPTEMBER, 1995

THE AGRICULTURAL EDUCATION MAGAZINE

SEPTEMBER, 1995

THE AGRICULTURAL EDUCATION MAGAZINE

Gardening project is part of the Agri-science laboratory.
(Photograph courtesy of Bertie Huron.)
hundred students have attended the day camp at Maquoketa Valley. The Agri-Science Camp is an educational experience that happens to be a lot of fun for the students as well as the teachers.

The program has helped justify extended contracts for agriculture teachers, and it has garnered support for the agricultural education program from the community. Maquoketa Valley elementary school teachers now call on the agriculture teachers as a resource person for information to be used in their programs. Elementary school teachers have given high marks to the Agri-Science Camp as being the source of much discussion and interest by students even after several months have passed. Parents have praised the Agri-Science Camp for helping their children further develop social skills and gain new friends. The Agri-Science Camp can set the stage for an even stronger agricultural education program in the school district, and that is exactly what happened at Maquoketa Valley.

How About You?
The best advice coming from the Maquoketa Valley experience with the Agri-Science Camp is to try something. As the advertisement says, "Just Do It!" The critical elements are to get organized, advertise and promote the program, and conduct a hands-on, action-packed event that will become the talk of the community. Agri-Science does spell AG-CITEMENT! ■

Looking Through a Window of Opportunity to Observe Theory in Practice

When a professional is recognized

for excellence, little, if any, information

about the individual is presented or

reflected upon in depth, so the point that

another professional could acquire information

which could enhance one's competence. Thus,

the reason for this article is to become

acquainted with the 1994 Agriscience Teacher

of the Year, Linda Rist. What kind of teacher is

she? What is her background in this new and

emerging curriculum area of agricultural

education?

Is there a window of opportunity to observe

theory in practice? Is there a chance to see

how our teachers, recognized for excellence,

instills a knowledge base leading to practical

application?

How does an agricultural educator proceed

when there are no agricultural mechanics facili-
ties available as part of the instructional pro-
gram? Such is the case in South Dakota's West

Central High School, the home of Linda Rist.

Over the years, programs throughout the coun-

dy have experienced similar situations for a

number of reasons. Often times, the profession

looks to such a facility as a means of offering

the final component of a hands-on program,

namely instruction in a wide variety of curricu-

lum areas within the scope of agricultural

vocational education.

How does an instructor bring excellence to

a program without a program component that

many in the profession consider indispensable?

Linda Rist looked to the emerging fields of

agriculture and technology as a means of

developing a modern, up-to-date agricultural

education instructional program.

In the book entitled Methods of Teaching

Agriculture by Newcomb, McCracken, and

Warmbord (1993) Chapter 1, "Factors

Influencing Decisions About Teaching",

highlights several components of good teaching,

including the major influences of a teacher's

skills and knowledge. Ms. Rist's approach to

teaching includes a major emphasis on a hands-
on approach to instruction. The curriculum

designed for the West Central program is the

result of Ms. Rist's commitment to seeking out

a variety of teacher in-service workshops lead-

ing to a major revision of the secondary pro-
gram curriculum. The curriculum and the culmi-

nating instructional program are the culmi-

nating point of a self-determined approach to

making major shifts in the instructional pro-

gram.

Newcomb, McCracken, and Warmbord (1993) suggest dimensions of a complete pro-

gram of agricultural education. Some of the components included are classroom instruction,

application of learning, the science laboratory, Supervised Agricultural Experiences, persons in

the community, involvement of parents, and working with teachers and administrators in the

school. Ms. Rist has taken the hands-on principle of teaching agricultural mechanics and

applied the same technique to agriscience and technology. Application of learning is evi-

denced by the fact that students conduct a variety of research projects. The practical application of learning abounds.

Ms. Rist is respected for her ability to work

with parents and SELs the role of Head of

Vocational Education. A number of significant developments have occurred recently, including

the arrangement for an articulation agreement with a post-secondary institution under

THEME ARTICLE

BY CLARK W. HANSON
Dr. Hanson is a professor
and supervisor of teacher
education in agriculture at
South Dakota State
University, Brookings.

Ms. Linda Rist is the agriculture instructor at West
Central High School, Harford, SD. (Photo courtesy of
Butterson.)
the Tech Prep program. Linda served on an arcur consortium curriculum steering committee which resulted in piloting the South Dakota Integration of the Applied Biology and Chemistry Curriculum (ABC Curriculum) and subsequent infusion of content into all agriculture classes. She is also a trainer for the ABC Curriculum available from CORD.

The development of the curriculum and implementation of the school laboratory has been aided with the assistance of a $37,000 investment. The moneys were the result of a grant which Linda wrote and was subsequently funded by the State Office of Vocational Education. This has enabled the school to secure equipment and teaching resources to ensure the success of the program, including a video camera attached to a microscope linked to a television monitor.

In light of the apparent success that the West Central High school program has experienced in the last few years, can one make an analysis of Ms. Rist’s approach to teaching and the “Principles of Teaching and Learning” as presented by Newcomb, McCracken, and Wurmbold (1993) in their college textbook for Agricultural Education majors?

Principles: When the subject matter to be learned possesses meaning, organization, and structure that is clear to the students, learning proceeds more rapidly and is retained longer.

Ms. Rist is a highly structured individual who carries that same trait into the teaching profession. It is easier if the material is presented in a sequential fashion. Terms are a part of the daily instruction and communication occurs at the students’ level, particularly in the area of biotechnology. The description is made utilizing scientific terms brought down to the students’ level, and soon the students can readily understand the material.

Principle: Students must be motivated to learn. Learning activities should be provided that take into account the wants, needs, interests, and aspirations of the students.

Superintendent, Superintendent of West Central High, states that Ms. Rist’s philosophy of teaching includes taking some time with each and every student. She is persistent and sees each student’s project through to the end. Linda causes this principle to come into play as she checks on each student, goes the extra mile, and pays attention to the “little things”. Talented academic students are enrolled in the program, and Linda possesses the attributes necessary to work with students who have a wide range of abilities. Ms. Rist aggressively seeks out opportunities to identify new ideas for the secondary curriculum.

Principle: To maximize learning, students should “inquire into” rather than “be instructed in” the subject matter. Problem-oriented approaches to teaching improve learning.

Linda indicated that all student use the scientific method of discovery in their daily laboratory activities and reports. Students ask “What would happen if...?” If the materials are available, students will design an experiment or plan and determine for themselves what would occur. The class may be studying viruses detrimental to animals, prepare an oral report, and, in turn, teach each other.

Principle: Students learn what they practice.

Ms. Rist devotes 40% of the agriculture coursework to hands-on laboratory activities. This follows the well-known fact that students retain more material and knowledge when given the opportunity to practice what has been taught. To facilitate this principle, Linda has created a “home-made” electrophoresis kit (Note: Electrophoresis is a method used in the laboratory to separate organic chemicals in a chromatography liquid environment to identify unknown organic compounds.) thus enabling students to have ample opportunity to conduct and observe this analysis process. Linda indicated that she prefers to teach in the same manner in which she is comfortable for her own learning to occur. Students conduct the laboratory activities as they see things fit together and the little “light bulb” comes on. A person can only picture a limited amount of stress in a period. Once the skill is performed, the student has a much better understanding of what is being studied.

Principle: Supervised practice that is most effective occurs in a functional educational experience.

The West Central High School also has a “make-shift” heraldustry curriculum which Ms. Rist has put to maximum use. She has not been hindered or held back by the lack of facilities, but instead, has striven to adapt and make the best of the situation. Ms. Rist has demonstrated that an instructor can make the transition from a traditional production agriculture based program to a science-based, problem-solving curriculum. Adequate facilities are desirable, but the teacher of the curriculum and the ability to motivate students concern the key ingredient to a successful program.

References

BY VERNON D. LUFTH AND GREGORY W. THOMPSON

Teacher-Student Relations

Agriculture education teachers should:

1. allow students to express their opinions about subject matter.
2. try to understand student problems and concerns.
3. insist that students be courteous to people in positions of authority.
4. make students feel that each one contributed individually to the success of the class.
5. praise good student performance.
6. set up a discipline plan so students will know in advance the consequences of their actions.
7. set high standards for students.
8. push the students to their full potential.
9. change the due dates of assignments if students have other activities which take up their time.
10. become close personal friends with some students.

Personal Characteristics

Agriculture education teachers should:

1. be committed to helping students.
2. enjoy teaching.
3. show enthusiasm for teaching.
4. be good role models for students.
5. be self-confident and poised.
6. be persistent.
7. be neatly dressed and well groomed.
8. show their commitment to teaching by belonging to professional teacher organizations.

Institutional Planning, Delivery and Evaluation

Agriculture education teachers should:

1. give precise, clear instructions.
2. provide a comfortable learning environment.
3. help students learn to think for themselves.
4. state objectives clearly so students will be aware of class expectations. 4.19
5. provide career opportunity information. 4.15
6. encourage creativity. 4.14
7. use audio/visual aids to enhance teaching. 4.13
8. give frequent feedback so students know how well they are doing. 4.13
9. prepare several hands-on student activities. 4.12
10. be knowledgeable in all areas of instruction (soils, livestock, mechanics, agribusiness, etc.). 4.11
11. use a variety of teaching procedures. 4.02
12. conduct well-organized classroom presentations and activities. 4.01
13. clearly state the long-term goals of the class. 4.01
14. direct students to additional resources outside the classroom. 3.99
15. give students and opportunity to increase a grade by doing extra credit assignments. 3.98
16. be able to connect daily lessons to other topics, current events, or personal lives. 3.98
17. invite guest speakers to class. 3.97
18. give grades according to students’ individual abilities. 3.95
19. frequently check for students’ understanding of the subject matter. 3.94
20. fairly and consistently evaluate students’ progress. 3.86
21. relate personal stories and experiences on the subject matter. 3.86
22. offer opinions within each subject area in terms of assignments, topics, evaluation, and discussion. 3.81
23. individualize instruction to meet the needs of each student. 3.80
24. make students responsible for their own learning. 3.78
25. frequently review previously studied material. 3.64

7. organize summer camps, picnics, and/or other recreation as chapter activities. 3.82
8. encourage programs such as Building Our American Communities, Safety, and Food for America as part of the FFA program. 3.78
9. use class time to complete FFA activities. 3.72
10. give students classroom points for being in FFA. 3.44

Supervised Agricultural Experience Programs

Agricultural education teachers should: MEAN

1. advise students how to improve their SAE program. 3.97
2. become involved with county and state fairs to help students show their productive enterprises. 3.91
3. schedule SAE visits in advance with each student. 3.87
4. emphasize SAE program area awards for students (proficiency, record book, State FFA Degree awards). 3.80
5. assist student during summer months with their SAE programs. 3.66
6. gear agricultural mechanics projects toward student SAE programs. 3.63
7. use SAE programs as examples for class lessons. 3.57
8. give extra credit to students with good SAE records. 3.52
9. include parents in the SAE visit. 3.48
10. just visit with students, not review record book. 3.28
11. publicize SAE programs through newspaper, radio, television, or other publications. 3.23

Summary

The results of this study revealed that the students were in at least slight agreement with all the characteristics and activities presented. Therefore, vocational agriculture teachers should pay more attention to all the characteristics and activities listed. As we can see by the list, students agreed that personal characteristics contributed most extensively to the effectiveness of agricultural education teachers, while characteristics and activities related to supervised agricultural experience programs contributed the least.

If secondary agriculture teachers are concerned about what their student feel make them effective teacher, the results of this study should be considered. Students appreciate excellence in teaching, and will continue to seek out teachers who they feel are effective.

References