Lessons from the Classroom and Research on Learning: Theory to Practice
Teachers Who Think About Their Practice

By Robert A. Martin, Editor

The best educational researcher, just like the best career counselor, could very well be the classroom teacher of agriculture. What characterizes the teacher as a model for research? Why would a teacher want to be an investigator?

Stephen Brookfield (1995) reminds us that when teachers are asked about learning more about teaching, they often say that they haven’t learned much in their work and that things stay about the same year to year. However, when they reply to specific questions probing how they have changed in the last twelve months, many are surprised at how much has happened to them (p. 75).

Teachers who think about their practice do more than merely select their technical content and deliver it in familiar ways. Teachers who think about their practice are teachers who follow a process of reflection. As identified by Brookfield (1995), “thinking teachers” are teachers who conduct self-reflection activities, listen and gather perceptions of professional colleagues, gather student input and review the literature for ideas and approaches to improve their practice. It is, in a sense, a personal investigation into the practice of teaching.

Teachers who think about their practice are models for their students. Students, regardless what they may say, want to please their teachers. If teachers act in a manner that suggests they are trying to improve their practice of teaching, students will know and will recognize the effort by their input and their actions. Teaching is often characterized as being a lonely profession. Whether or not this is true is more

Self Reflection Literature Practice of Teaching Colleague’s Perceptions

Student Input

reflect on our practices. In doing these steps we will provide a framework for students to follow in their own investigations and learning.

This issue of The Magazine has some very interesting articles. Thanks goes to Susie Whitington for soliciting, collecting and organizing those articles for the theme focused on using the classroom as a way to learn more about teaching.

Few issues of The Magazine have so sharply contrasted the issues in that high stakes business we call “Agricultural Education.” What is the balance between experimental learning and testing as we seek to learn more about learning in the classroom, laboratory or related sites? Please read this issue of The Magazine to learn more about practices that impact learning in agricultural education.

Reference

What Could I Share About Teaching and Learning?

By M. Susie Whittington

From 1989 to 2000, I had the pleasure of observing teaching in nearly 70 college classrooms for over 600 hours. During that time, as you can imagine, I witnessed teaching that ranged from barely competent to masterful. I always enjoyed the opportunity to visit with the professors about their backgrounds and previous teaching experiences. Of course, their backgrounds were as varied as their level of mastery. As all of you know, most college professors have had no formal preparation in teaching, thus, as Dr. Lowell Heddens would contend, "they teach the way they were taught." However, among the "great ones" there was a common theme: they each had one significant influence in their lives for whom teaching was a passion.

Although my observations of the professors and my conversations with them do not constitute a scientific study, to me the finding is still significant: in college classrooms where teaching was superior, the professor was influenced by at least one masterful teacher.

What did I learn? I learned that in each classroom where I observed, no matter the level of teaching mastery, the professor wanted to learn more about teaching and wanted to improve his/her classroom effectiveness. I easily learned, through the questions they asked me, the follow-up phone calls that came to me, and the requests I received to review syllabi or critique a new technique, that the professors were hungry for more.

What could I share with them about what is "known" in teaching and learning?

In this issue of The Agricultural Education Magazine, we explore "lessons from the classroom on teaching and learning." You may want to begin reading this issue by first reading Jamie Cano's overview of "what is known about effective teaching" where he examines the work of notable researchers in education. I suggest that your follow-up reading include the articles by Burik and Yendol-Silver who chose to position "teachers as researchers" in their own classrooms. Burik uses his own laboratory as his qualitative and quantitative investigation site and implements changes accordingly. Likewise, Diane Yendol-Silver presents the "pedagogical content knowledge (pck)" concept and walks readers through the inquiry process that teachers use to improve their classrooms.

Recently, we have all heard jargon related to achievement testing, personalizing typing and fostering learning communities. You will be interested in reading the insights provided by Jasper Lee, Tracey Kitchel, and Anita Woolfolk Hoy and Neil Knobloch on these current education subjects. We know that students grasp concepts more readily when they have a framework to which they can attach the content. But, Anna Ball and Shannon Washburn, and Rick Rudd and John Ricketts wrote articles that patiently lead us through using "Bloom's Taxonomy" and the "Elements of Reasoning" to frame agriculture subject matter (with concrete examples) around a thought process that students can use in our classrooms.

And finally, if you are like me, sold applications are a must. Billiee Foster and Jack Elliot share with us a "final presentation" required by all student teachers in their department. Aren't we all interested in ideas that leave our students with more confidence, and a sense of accomplishment?

What could I share about what is "known" in teaching and learning?

From the overview, to the research, to the practical application, this is an issue of The Agricultural Education Magazine that begins to answer the question.

Lessons from the Classroom and Research on Learning: Theory to Practice

How to Successfully Publish in The Agricultural Education Magazine

The Agricultural Education Magazine has provided the profession a wide variety of ideas, practices and procedures that have proven successful for thousands of teachers, students and other professionals interested in Agricultural Education. The authors who have submitted their work for publication in this journal have consistently provided much food for thought and many practices that work well in the teaching-learning process. Potential authors often ask questions regarding the parameters for publication. The following ten steps may prove useful to you as you prepare your article for The Magazine. If you have additional questions or concerns, please contact the Editor. Please consider writing an article for The Magazine.

Your profession needs to "hear" about your ideas, successes, concerns, and approaches to teaching and learning that work for you.

- The best articles for The Agricultural Education Magazine are the ones that have a clear point and share practices that can be used in the "real world" of teaching agriculture. The Magazine is a "hands-on" practical approach journal. Articles should share specific steps one can take to make teaching and learning in and about agriculture more enjoyable, efficient and effective. Philosophical or theoretical articles are appropriate if they have a specific message and can be useful to the practitioner in the field.

- Refer to the latest issue of The Magazine to determine the dimensions of similar articles.

- Final copy should be two pages as shown in the journal. A four page double spaced manuscript is approximately the proper article length for submission.

- Articles should be accompanied by a recent headshot photo of the author(s).

- If the author(s) has photos and drawings etc. appropriate for the "theme issue" for which he/she is submitting an article, please make sure the photos are of high quality and they tell the story. Only high quality (not digital) photos acceptable to the printing company.

- Manuscripts should be sent to the Theme Editors if at all possible, however articles may be sent to The Editor if that is the preference of the author(s). Theme articles get first priority in article selection for publication. General articles will be used when space is available.

- Manuscripts are due to the Editor of The Magazine at least 60 days prior to publication. Follow the published timeline carefully. Work closely with the Theme Editor to have a timely submission. The Editor makes the final decision to publish any article.

- All manuscripts received by The Editor are acknowledged. Please make sure your address, phone and e-mail addresses are available and clearly identifiable.

- Each author is asked to sign a "release" form. This release form gives permission to reprint your article once it is published in The Magazine.

- If your article is published, you will receive a free copy of the journal along with a letter of con-
What is Known About Effective Teaching?

By Jamie Cano

In the United States, research on teaching has produced vast amounts of information. The majority of this research has been conducted using causative factors, such as classroom activities, curriculum initiatives, or methods of instruction. Since the 1970s, teacher behaviors have been researched as they relate to learner achievement. What is still missing is research on how teacher behaviors affect and effect the curriculum, the school environment, and their learners. In spite of all the research efforts in education, agricultural education included, the most frequently asked question continues to be: What makes for effective teaching? While there are many characteristics to describe effective teaching, there is no single definitive quality that can be attributed to the success of teaching. Current research studies reveal a strong association between specific instructional behaviors and learner performance. Further, there is a wealth of research manuscripts on specific teacher behaviors and gender/ethnic expectations. In all that has been written, researchers have attempted to identify specific managerial, instructional, and personal attributes of teachers to distinguish the effective teachers from the more ineffective teachers.

In the 1970s, researchers like Dunkin and Biddle, Gage, Good, Brophy, and Everson, attempted to build a scientific foundation for teaching by associating teacher behavior with learner achievement. What was learned in all these studies was that when teachers systematically structured their behavior, learners achievement increased. It was concluded that because of greater teacher effectiveness and superior teaching quality, there was a corresponding resurgence in learner achievement.

Engaging all learners in learning is our primary mission as educators. All stakeholders - teachers, colleagues, parents, and the larger community - are needed to reach this goal.

Brophy and Good teamed together and reviewed a large number of research studies involving teacher behaviors and learner achievement. The conclusion reached by Brophy and Good (1974) was that the most effective strategy for optimal learning was the concept, a level at which the teacher and the learner were matched cognitively. Other researchers found significantly greater interpersonal relationships between teachers and learners who were matched in their cognitive style, versus those who were mismatched. These sources of increased learner achievement were: a shared interest with the teacher, shared personality characteristics with the teacher, and a similarity in communication modes with the teacher.

Research in sociology, psychology, anthropology, and philosophy, disciplines which are the foundation for education, supported the premise that teaching was a highly complex, content-specific, interactive activity in which differences across classrooms, schools, and communities were critically important. Other studies in teaching investigated cooperative learning, social learning theory, and information processing strategies as a link between teaching methods and learner outcomes. The results were nonconsistent. While the research in teacher effectiveness is ongoing, and by no means complete, there are significant factors which are known to affect learner achievement as related to teacher effectiveness. Educational research has produced a number of teacher behaviors that can be replicated with success in classrooms of any subject matter. The quality and frequency of teacher-student interaction can directly affect the learner’s ability to learn. Research studies have documented the effects of the teacher’s interaction with learners and found the degree and frequency of praise, use of classroom time, and the amount of attention given to groups or individuals to have significant positive correlations to a learner’s ability to learn.

The most noteworthy study of the 1970s was the work by Rosenshein and Furst. Rosenshein and Furst (1971) examined the relationship between teacher behavior and learner achievement. Their achievement study revealed that students who identified the teacher as a significant other achieved more effectively, and a means to focus improvement efforts. The framework is based on an analysis of important tasks or behaviors required of teachers, reviews of research, and extensive field work that included pilot testing the criteria. The Danielson "model" is what has become known as PRAXIS III. Although PRAXIS III is geared towards educators, the four major areas, with their accompanying components, are what some are calling "the closest that education has come" to identifying "effective teaching."

Briefly, the four major areas of the Danielson model are: Planning and Preparation, Classroom Environment, Components of Professional Practice, and Professional Responsibilities. The Planning and Preparation components are: demonstrating knowledge of content and pedagogy, demonstrating knowledge of learners, selecting instructional goals, demonstrating knowledge of resources, and assessing learner learning. The components for Classroom Environment include: creating an environment of respect and rapport, establishing a culture for learning, managing classroom procedures, managing learner behavior, and managing physical space.

The components for Professional Practice include: communicating clearly and accurately, using questioning and discussion techniques, engaging learners in learning, providing feedback to learners, and demonstrating flexibility and responsiveness. Finally, the components for the Professional Responsibilities are: reflecting on teaching, maintaining accurate records, communicating with families, contributing to the school and district, growing and developing professionally, and showing professionalism.

Engaging all learners in learning is our primary mission as educators. All stakeholders - teachers, colleagues, parents, and the larger community - are needed to reach this goal. It appears as if we know what effective teaching is and how to deliver it; the challenge is to fulfill our obligation as educators.

References


Jamie Cano is an Associate Professor at The Ohio State University.
The Classroom as a Teaching Laboratory

By Phil Barick

I have had the privilege of sharing ideas about teaching with many current, new, and prospective high school agriculture teachers. They have been prepared through their university teacher preparation programs and have gained knowledge in their subject domain through agriculture classes and personal experiences. They have the tools and experiences necessary to begin teaching.

Teaching and learning are dynamic processes. Teachers must continue to grow into their professions. University agricultural education departments and professional associations often provide "in-service activities" to improve teachers' knowledge in their subject domain; agricultural mechanics, aquaculture, biotechnology, etc. To my knowledge, little in-service is provided to improve teachers' understandings of the teaching/learning process. So, how do practicing high school agriculture teachers improve their classroom teaching beyond that of a beginner? What do they learn to be more effective teachers?

High school agriculture teachers have formal training in teaching sufficient to begin as teachers. How and where do they learn to master their craft and become more effective teachers?

Teaching is a craft

To learn a craft, apprentices observe, work, and practice with a master craftsman, usually over a considerable period of time. Now ask yourself, how many master teachers have I observed? How many master teachers have I had the opportunity to work with and to practice with for some extended period of time, particularly after I began to teach? After student teaching, I'm certain we have had almost no contact with practicing master teachers. How then can high school agriculture teachers continue professional development in the classroom?

Classroom as a laboratory

The classroom becomes a teaching laboratory. Problems are identified by the teacher and are specific to the particular class. The solutions identified focus on immediate application in the local setting. Findings are evaluated in terms of their local applicability, not their generalizability to other classrooms in other settings. "Is it valid for my classroom?" is the only concern. Exploration, explanation, and effect size are the measure of quality. The purpose is to improve practice in my classroom (to improve teacher effectiveness), not to build theory.

Using the classroom as a teaching laboratory allows us to study practical problems. We plan and conduct "research" and are most likely to be affected by the findings. We can extend our knowledge about teaching and learning. We become more responsible for our personal professional growth and development as a teacher in our classroom.

Classroom research can have quantitative dimensions (objective, number-based data), but, for the most part, is qualitative research (subjective, word-based data), following qualitative methods and designs. Data are collected by the researcher; the teacher is a participant observer. The teacher/researcher attempts to understand that which is actually occurring in a particular situation under a particular set of conditions. The teaching is the treatment.

Where do we begin?

Teachers should look to their particular classrooms and begin to ask questions. What do I do that contributes to student learning? What aspects of the course are most difficult for the students to learn? Why are students having difficulties? What preconceptions do students bring to the class that either help or hinder their ability to learn? How might I modify a presentation or an assignment or laboratory to improve student learning? Can I design more effective homework assignments? Are my visuals appropriate and effective?

Teachers need to critically observe and reflect on what is occurring in their classrooms, just as would be done by university researchers in their laboratories. Explore and try to explain the teaching/learning process. The outcome of classroom research is student learning. Again, the teaching is the treatment. As the teacher and the researcher, we have the power to manipulate the treatment and study its effect on student learning. We are also the principle instrument for data collection.

Using Data

Classroom researchers have both qualitative and quantitative data available to them. Since it is their classroom, they have control. Examinations, quizzes, homework assignments and laboratory reports can all be designed and evaluated to answer specific questions about teaching effectiveness and learning. Qualitative data can be collected through careful and systematic observation. Another source of information/data are the students themselves. Through journals and/or e-mail reactions to specific questions, topics of interest, and simple process analyses, the classroom researcher can gain valuable insight into what students are learning, how they are learning, where the difficulties might be, and general perceptions of their teaching/learning experience.

The classroom researcher can then analyze the data. No need for inferential statistics: statistical inference (generalizability) is of little value or concern. Simple descriptive statistics, content analyses, and subjective descriptions of observations and student inputs provide the means to make decisions to improve the effectiveness of the treatment, the teaching.

The Example: Using the classroom as a clinical laboratory improved effectiveness of instruction (student achievement) in an introductory course in Technical Systems Management, an agricultural engineering technology course. Surface drain design is the capstone activity for the soil and water portion of this course. This design activity requires students to use knowledge and skills in horizontal land measurement, profile leveling, reading charts and graphs, design, and calculating areas and volumes. Although no single task is overly complex, many tasks need to be correctly completed and correctly sequenced to complete the design problem.

Normally, the surface drain design problem is presented during two lectures. In each of the two lectures, a sample problem is reviewed. Lecture is followed by lab, where survey data are collected and students design a drain. Sixty to seventy percent of the students successfully complete the design. Why is thirty to forty percent of the students having difficulty with the surface drain design problem? A problem was identified by observing laboratory reports and quizzes. A task analysis of the design activity was completed and laboratory reports and quizzes were compared to see if any one step was preventing students from successfully completing the design. No one step was identified as a confounding step. Students were then asked to communicate via e-mail, identifying difficulties they were having with the design. Again, no single step was contributing to the difficulty. Students understood the design when explained in lecture, but did not possess sufficient mastery to conduct the design on their own. Why not? Two principles of learning came to mind. Students learn best when new knowledge is connected to what they already know; and, the rule of seven, i.e., students have difficulty learning more than seven bits of information per session. Remembering that the teaching is the treatment, a classroom experiment was designed...the treatment was modified.

Rather than deliver two lectures, each reviewing a surface drain design problem, the first lecture was changed to the design of a driveway. All students had previous knowledge of a driveway (not true regarding surface drains) and the steps in designing a driveway closely approximate those of a surface drain. The difference between the two designs is one of cross-section. The driveway has a rectangular cross-section with a constant top width. The surface drain may be triangular, trapezoidal, or parabolic in cross-section with the top width varying as a function of cut. Not only did the driveway example present information in a context students already knew, but it reduced the number of steps in the design since cross-section was less variable.

The second lecture then built on the driveway design. The only new information was the introduction of the different cross-sections and the accompanying area and volume calculations. In addition, a "quick time" video of a waterway in operation was shown so students could better understand a surface drain conceptually.

The treatment was modified. Data were again collected. Students achieving mastery of the surface drain design increased from 60 to 70% to 80 – 90%. Teaching effectiveness improved. Students learned how to design surface drains and the teacher learned how to be more effective in the classroom.

Benefits of classroom research

When teachers design and conduct classroom research, questions about student learning come to the forefront. Teachers are forced to reflect on their teaching. By asking questions and collecting data, teachers may better understand the teaching/learning process and become better teachers.

References


Phil Barick is a Professor at the University of Illinois.
Recognizing the Complexity of Teaching: Teacher Inquiry as a Vehicle for Learning

By Diane Yendol-Silva

The University of Florida

Studies of Teaching (Jackson, 1968; Lortie, 1975; Claudini, 1986) describe teaching as complex work characterized by simultaneity, multidimensionality, and unpredictability. In classrooms, competing goals and multiple tasks are negotiated at a breakneck pace, trade-offs are continually made, unanticipated obstacles and opportunities arise. Each hour of every day teachers must juggle the need to create a secure supportive environment for learning with the press for academic achievement, the need to attend to individual students and the demands of the group, and the challenges of parsing multiple strands of work so that students at varying places in their learning move ahead and none are left behind (Darling-Hammond, 1997, p.69).

As a leader in the field of teacher education, in this excerpt, Linda Darling-Hammond discusses the complexity of teaching and leads teacher educators to the question, “How can we best prepare teachers for the challenges they will face teaching all children in 21st century schools?”

To answer this question, teacher educators begin by recognizing the intellectual activity that teaching in the 21st century requires. As a result, prospective teachers must be prepared for new challenges in order to become effective professional decision makers. Teacher instructional and curricular decision-making rests on the teacher’s ability to simultaneously consider individual and collective student needs, the school and classroom context, the subject matter of the lesson, the instructional approach, and the teacher’s professional beliefs. This complex process involves the teacher’s construction of pedagogical content knowledge (PCK) necessary to educate all children.

Building on Crossman’s (1990), Shulman’s (1986, 1987), and Magagnos, Krijcik, & Bozko’s (1999) work, PCK represents the teacher’s ability to transform subject matter knowledge into pedagogy by constructing learning experiences that organize and represent the knowledge and processes of a content area in light of particular contexts and students.

The construction of PCK is an intellectually demanding and complex activity that is neglected by the current focus on high stakes testing, “teacher proof,” and highly scripted curricula. Teaching is a powerful vehicle for helping prospective teachers move beyond this scripted curriculum to develop PCK that leads to enhanced student learning. In fact, research suggests that teacher inquiry has the power to transform classrooms, schools, and the teaching profession as knowledge about teaching and learning are generated from and used by those closest to the children — classroom teachers, and principals.

What is Teacher Inquiry and how does it develop PCK?

The teacher inquiry movement engages teachers in developing PCK as they identify key problems to study, design a study, collect data, interpret data, and make changes in their classrooms. Teacher inquiry shares similarities with action research (Carr & Kemmis,1986). This inquiry process: (1) generates theories and knowledge grounded in the realities of educational practice, (2) engages teachers, their collaborators in educational research focusing on their problems for investigation, and (3) views teachers as central to the research process since they are more likely to facilitate change based on the knowledge they create.

When teachers study their classrooms in order to develop the PCK that can inform their instruction they begin by brainstorming questions. Teachers’ questions emerge from their own classroom observations and felt difficulties. These questions often represent four general categories: (1) focus on pedagogy, (2) focus on a particular child/child in the classroom, (3) focus on one’s own teaching beliefs, and (4) focus on the curriculum.

Once a teacher inquirer has defined a question of inquiry, the next step requires developing an inquiry plan for gathering the data. Since meaningful teacher inquiry should be a part of the teacher’s daily work, developing a plan for data collection means identifying ways data can be naturally captured within the classroom. To capture “action” in the classroom, teachers observe and take fieldnotes, tape record or videotape, diagram the classroom, or have others (administrator, co-teacher researcher, paraprofessional, student teacher, instructional support teacher, curriculum specialist, or university researcher) take notes for them. As a method of tracking student performance in the classroom, many teachers collect student work and other classroom, school, or school district artifacts. Artifacts include documents that may be related to the research such as curriculum guides, parent newsletters, and correspondence to and from parents, principal, and specialists.

To capture the “talk” that occurs in the school and in the classroom, teacher researchers conduct interviews. Interviews can be informal, spontaneous, or more thoughtfully planned. Depending on the teacher’s inquiry, interviews can take place in the classroom as well as adults such as parents, administrators, other classroom teachers, and instructional support teachers can be a rich source of data.

To capture the “thinking” that occurs in the school and classroom, teacher researchers often keep their own journals reflecting on their own thought processes as well as ask students to journal about their thinking related to the project at hand. Additionally, formal mechanisms can be employed (such as case studies) to attempt to capture the action, talk, thinking and productivity that are a part of each and every school day. Data collection is not separate from teaching, but a teacher who inquires does each day in the classroom.

As teachers collect data, they simultaneously engage in data analysis. Hubbard and Power (1993) described data analysis as the process of bringing order, structure, and meaning to the data, to discover what is underneath the surface of the classroom (p. 65). Analysis involves reading and rereading the data looking for categories or patterns to appear. This inductive process brings teachers closer to the happenings within their classroom and builds meaningful connections between their work and opportunities for enhancing their work with children.

Throughout the inquiry process, teachers also read relevant literature related to their work. In essence, the literature serves as another source of data that systematically offers insights into the question the teacher pursues. By utilizing the literature as a data source, a teacher’s work becomes connected to the thinking of others in the field of education.

The final process of teacher inquiry is writing up the results of a particular inquiry and sharing the findings with others. Some school districts, school-university partnerships, and other educational communities have teacher inquiry conferences dedicated solely to providing a forum for teachers to share their work. Other forums include sharing inquiry work at faculty meetings or disseminating their work in journals.

Where does Inquiry Take 21st Century Teachers?

By participating in teacher inquiry, teachers construct the pedagogical content knowledge needed for real change to take place for students in their classrooms. The inquiry process pushes teachers beyond the short-sighted thinking of scripted and “teacher proof” curriculum by providing teachers with tools to understand the learning needs of all students. The ultimate goal of creating an inquiry stance is to prepare teachers for the complexity of teaching and learning in the 21st century. This stance provides the professional positioning where raising questions becomes a central feature of teacher work.

References


Diane Yendol-Silva is an Assistant Professor at the University of Florida.
Gaining High School Achievement in Agriscience

By Jasper S. Lee

High-stakes testing has emerged as a major molder of practice in schools today. Teachers want their students to make good scores on standardized achievement tests. Students typically want the best scores they can. Working together, teachers and students can participate in learning activities that promote higher scores.

A number of educational practices are used in agricultural education throughout the United States. These are typically and customarily accepted as "ways to teach" in agricultural education. Are these practices efficient? Do they lead to high student achievement?

The commonly accepted "ways to teach" include, among others, the three major program components: classroom and lab instruction, supervised experience, and FFA activities. Each of these, specific techniques are used. Some of the techniques have been used for many years; others have emerged in the last few years. No research has been done to identify the most efficient "ways to teach" by looking at student test scores on a nationwide basis. The instruction has typically involved considerable psychomotor learning in labs, part-time jobs, and student project ownership. Efforts to help students internalize the related theory and principles, i.e., the background knowledge, have often been minimal. It is this background knowledge that standardized tests typically assess.

Teachers in schools where the Agri-Science Achievement Test (AAT) was administered were asked to provide background information about themselves and their schools. This information has been used to identify selected attributes leading to high student test scores. The AAT was developed to measure mastery of technical information in agriculture. Emphasis was on basic, science-based agriculture. The situation in students that used block Basic and Advanced. The Basic Form is for administration after the first course in science-based agriculture. The Advanced Form is designed to be administered after the second course or later.

Each form has sixty test items, developed using state curriculum guides, blue prints, and other competencies/outcomes of agricultural education. A national panel of test item validators was used to help assure validity and reliability. Tests were field tested in a number of schools and then administered nationally.

The number of students enrolled in a high school is related to test scores. Students in high schools with enrollments of 1,000 or fewer had, on the average, 37 higher test scores on the Basic Form of the AAT than those in high schools with over 1,000 students. Interpretation: Students have higher test scores in schools with 1,000 or fewer students.

The number of students in class sections appears not to be as important in test score achievement as has been thought. If an enrollment of 12 students is selected at the breakpoint between small and large classes, the difference in student scores is negligible on the Basic AAT: On the Advanced AAT, students in smaller classes scored 18 percent higher. Interpretation: Class size is not at important with introductory or basic classes as it is with advanced classes. Where students in smaller classes have higher test scores.

Alternative, or block, scheduling has been implemented in high schools nationwide since the early 1990s. Advanced agriculture classes have long involved double-period scheduling, and this has provided benefits in student achievement. The findings of this research tend to support block scheduling over traditional scheduling. Students in schools that used block scheduling scored 10 percent higher on the Basic AAT. No information is reported for the advanced classes due to the small number of schools on traditional scheduling that used the Advanced AAT. Interpretation: Students in classes on block scheduling have higher test scores in basic classes than those in classes with traditional scheduling.

Teacher experience, education, and gender attributes are included in this article as related to student test score achievement. The reader should remember that emphasis on science-based agriculture emerged rapidly since the late 1980s. Teachers who entered teaching at or before that time are likely to be in fewer schools without attention to methods of teaching science-based classes.

The national average number of years of teaching agriculture is slightly over 14 years. This was used as the breakpoint in teacher experience. There was no difference in student test scores on the Basic AAT in classes based on the number of years that a teacher had been teaching. Student test scores on the Advanced AAT in classes taught by teachers with over 14 years of experience were 10.3 percent higher than those with 14 or fewer years of experience. Interpretation: Students of teachers who are relatively new in teaching may have higher scores than the long-experience teachers in science-based agriculture classes.

The students of teachers with a baccalaureate degree as their highest level of education score almost equally with those who have a master's degree or higher. Of course, teachers with advanced degrees have been teaching longer and may lack specific preparation in how to teach science-based agriculture. Interpretation: The educational level of the professionally-prepared teacher does not appear to be a major factor in student test score achievement.

Increasingly, agriculture classes are being taught by female teachers. The number of female teachers has steadily increased since the mid-1970s, when agriculture teaching was dominated by males. On the Basic AAT, students of female teachers scored less than 5 percent lower than those of male teachers. With the Advanced AAT, students taught by male teachers scored 5.4 percent higher than those of female teachers. Interpretation: Student achievement varies little by gender of the teacher though students of female teachers tend to have higher test scores in introductory classes and students of male teachers tend to have higher test scores in advanced classes. Teachers reported the primary instructional strategies used in the classes. The highest average score on the Basic AAT was for those taught by class presentations and discussion. Combinations of strategies were next and closely followed by laboratory-based instruction. Students with primarily computer-based instruction scored 27.2 percent below those taught with classroom presentations and discussion. On the Advanced AAT, students primarily taught by laboratory-based instruction achieved higher scores than those taught with other approaches. Interpretation: Instructional strategies that focus on student mastery and helping students internalize material information yield the best achievement on standardized tests. Textbook use is an important part of the learning process in some classes. They are not used in other classes. In terms of student test score achievement on the Basic AAT, students in classes using textbooks scored 12.1 percent lower than those in classes not using textbooks. The scores of students of female teachers using textbooks averaged 31.1 percent higher than those without textbooks. Interpretation: The use of modern, science-focused agriscience textbooks results in markedly increased student test score achievement.

Supervised experience (SE) is an important educational component in agricultural education. The findings were reported in terms of the percentage of students who have SE. The classes were divided into two groups: those with 50 percent or below having SE and those with over 50 percent of the students having SE. On the Basic AAT, students in classes with 50 percent or below having SE scored 13.5 percent above those in classes with more than 50 percent of the students having SE. On the Advanced AAT, there was little difference in student test scores and emphasis on SE through the nod goes to students in classes in which it appears that less time is devoted to SE. Of course, SE is closely related to achievement of FFA activities. These have been, and continue to be, an important part of agricultural education.

References

Jasper S. Lee is a consulting Agricultural Educator in private practice as Lee and Associates, PO. Box 290, Edwardsville, IL 62025. A more detailed summary of the study is available from the author.
Lessons from the Classroom and Research on Learning: Fostering Communities of Learners

By Anita Woolfolk Hoy and Neil Knobloch

Fostering Communities of Learners (FCL) is "a system of interacting activities that results in a self-consiously active and reflective learning environment" (Brown & Campione, 1994, p. 292). This instructional program, grounded in psychological learning theories, has implications for agricultural education at many levels. Especially giving our space limitation, it is tempting to reduce the complex processes and understandings of FCL into a simple set of steps or procedures. But the inventors, Brown and Campione, caution us to consider FCL, our emphasis should be on functionality, philosophy, and principles, not on procedures (p. 315). Thus we will not attempt to give a complete description of FCL, but rather give an overview of some key principles and possible applications in agricultural education.

At the heart of FCL is a three-part process: Students engage in independent and group research on one aspect of the class inquiry topic—for example, animal adaptation and survival. The goal is for the entire class to develop a deep understanding of the topic. Because the material is complex, class mastery requires that students become experts on different aspects of the larger topic and share their expertise. The sharing is motivated by a consequential task—a performance that matters. The task may be a traditional test or it may be a public performance, service project, or competition. Thus the center of FCL is research, in order to share information, in order to perform a consequential task (Brown & Campione, 1994).

This inquiry cycle may not seem new, but what sets FCL apart, among other things, is having a variety of research-based ways of accomplishing each phase, and paying careful attention to teaching students how to benefit intellectually and socially from each step. Research can take many forms such as reading, studying, attending research seminars, guided writing, consulting with experts face-to-face or electronically, or peer and cross-age tutoring. In order to do research, students are taught and coached in powerful comprehension-monitoring and comprehension extending strategies such as summarizing and predicting for younger students and for older students, forming analogies, giving causal explanations, providing evidence, and making sound arguments and predictions. Students are taught explicitly how to share information by asking for and giving help, majoring in special interest and expertise in an area, learning from each other's exhibitions, participating in jigsaw cooperative groups (Aronson, in press), and joining in whole class cross-talk sessions to check the progress of the research groups.

Performing consequential tasks includes publishing, designing, creating solutions to real problems, as well as exhibitions, performances, tests, quizzes, and authentic assessments that can hardly be distinguished from ongoing teaching. As noted in Figure 1, thoughtful reflection and deep disciplinary content surround and support the research, share, perform cycle. FCL teachers create a culture of thinking (Tishman, Perkins, & Jay, 1995)—self-conscious reflection about important and complex disciplinary units. As Brown and Campione (1994) point out, we "cannot expect students to invest deep complexity about what we ask them to do. Valuable and important tasks stimulate student interest and curiosity, encourage effort and engagement, lend themselves to meaningful assessment, and prepare students for life outside the classroom. Consequential tasks, such as caring for other living things, have been a strength of much of our work in agricultural education. By attending to this and other aspects of FCL, we may continue to enhance the learning of our students.

Table 1. Examples of consequential tasks and their applications in agricultural education.

<table>
<thead>
<tr>
<th>CONSEQUENTIAL TASKS</th>
<th>APPLICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performing and Teaching</td>
<td>Leadership</td>
</tr>
<tr>
<td></td>
<td>• For experts</td>
</tr>
<tr>
<td></td>
<td>• As experts</td>
</tr>
<tr>
<td>Acting upon Personal Stake</td>
<td>Students demonstrate parliamentary procedures for experts such as FFA officers, school board or civic group.</td>
</tr>
<tr>
<td></td>
<td>• Students become experts on a topic or task and teach younger students, such as safety camp or agricultural literacy program.</td>
</tr>
<tr>
<td>Solving Biological and Social Problems</td>
<td>Agricultural Business</td>
</tr>
<tr>
<td></td>
<td>• Plant or animal project</td>
</tr>
<tr>
<td></td>
<td>• Aryan to minimize social conflict</td>
</tr>
<tr>
<td>Animal Science</td>
<td>Students receive a guppy fish that they take care and enjoy for the course. They can learn to feed it, water it, and handle it. The fish comes into the classroom the day before it is due. The students observe the fish's behavior and make notes about its characteristics. The fish is kept in a small tank and is returned to the home of the student who earned the guppy. Students are encouraged to keep journals about their observations.</td>
</tr>
</tbody>
</table>

Anita Woolfolk Hoy is a Professor of Educational Leadership and Policy at The Ohio State University.

Neil Knobloch is an Instructor in Human and Community Resource Development at The Ohio State University.
Teaching Students to Think: Practical Applications of Bloom's Taxonomy

By Anna L. Ball and Shannon G. Washburn

Bloom's Taxonomy is a staple of teacher education. We've all been familiarized with Bloom's knowledge, comprehension, application, synthesis, analysis, and evaluation levels. Bloom challenged educators, through this hierarchical classification system, to "think about the objectives they write, the questions they ask, and the test items they construct" (Biggs & Collis, 1994). Given the rapid advances in technology and information access, an abundance of educational literature (Secretary's Commission on Achieving Necessary Skills [SCANS], 1991; National Research Council [NRC], 1996; and Goals 2000) has been produced charging educators with the tasks of providing a workforce of individuals with adequate analytical, problem-solving, and critical thinking skills. While we may not review every objective, classroom activity, or test question and cross-reference it with Bloom's Taxonomy, we are certainly mindful that teaching and learning should extend beyond the knowledge level, challenging our students to think and solve problems in real-world applications.

Agricultural Education as a discipline has revealed in its "hands-on" and "applied," approaches to teaching and learning which suggests teaching that extends well beyond the knowledge and comprehension levels of Bloom's Taxonomy. Are we really doing this? Do all facets of our teaching truly challenge students at advanced levels of thinking? For example, are we asking students to conduct experiences in the greenhouse testing the effects of plant nutrient deficiencies as a viable 'hands-on' activity, but then giving them an exam that asks them to recall only the most basic knowledge-level facts? The value of the activity that challenged students at the evaluation level of the taxonomy is significantly diminished when students are assessed at the knowledge level. Furthermore, do our classroom objectives, teaching strategies, and methods of assessment align with one another and are they congruent with our cognitive goals for instruction? For example, do we lecture to students regarding concepts that we ask them to apply on a performance-based examination? This type of misalignment between teaching methods and assessment strategies creates not only a frustrating environment for students, but also a situation for student failure.

In practice, Bloom's ideas are often limited to their application while writing course objectives for administrative approval. How often do we look past this superficial use of Bloom's theory and critically examine the levels at which we expect students to perform? How often do we review whether we are challenging students to move to higher levels of thinking and learning? Agricultural education has promoted itself as the "hands-on" and "applied" learning program in schools. By resting on these laurels, we run the risk of failing to challenge our students beyond the application level. Application of knowledge has its place in agricultural education and we have established our ability to help students do the things we teach them to do. However, by failing to move beyond the doing level, we are not equipping students to think through difficult situations when we aren't there to help them.

Finally, to help our students prepare for their ultimate entry into the challenging world of work, we need to equip them with the ability to evaluate difficult situations and arrive at creative solutions to unprecedented problems. This ability can be taught to students, and in agricultural education, we have the ideal topic and environment in which to do so. We should make an effort to take advantage of our daily opportunities to challenge students to solve problems and make decisions when appropriate. These situations may include: resolving conflict among people, proposing solutions to environmental or political issues, anticipating where the "look" of agriculture 25 years from now, or finding ways to "build a better mousetrap" in the agricultural mechanics lab.

We, as agricultural educators, need to determine ways in which to utilize Bloom's Taxonomy in our teaching to challenge our students at the levels of cognition that have become increasingly valued in the ever-changing workforce of the 21st Century. We should challenge ourselves to critically analyze our teaching methods and our assessment strategies. We should reach beyond the assumption that we are merely "applied" because we are agricultural education. Finally, we need to examine the alignment between instructional objectives, instructional strategies, and assessment techniques within the appropriate level of Bloom's Taxonomy to increase the efficiency and effectiveness of our teaching, to decrease students' levels of frustration with mismatched expectations, and ultimately, increase the success of students' thinking at higher levels of cognition.

Ten simple ways to increase your students' cognitive abilities:
1. Make a concerted effort to observe your colleagues and incorporate some of their instructional approaches.
2. Find ways to reward and encourage your students for reading pertinent information outside the classroom and challenge them to think about what they have read.
3. Examine your introductory courses to find areas to encourage higher cognitive learning early in agricultural education experiences.
4. As you select in-service workshops or continuing professional education courses, seek out opportunities that provide suggestions for increasing the cognitive levels of your instruction.
5. Create an interactive learning atmosphere by limiting your involvement to bring a discussion facilitator on debatable topics.
6. Expect your students to clearly explain and defend their thoughts in writing and orally.
7. Model problem solving for your students through think-out-loud exercises. Listen to them do the same. Examples include reciprocal teaching and think-pair-share exercises.
8. Rather than making all the connections for your students, ask them to apply new information to real-life examples.
9. Require your students to envision the world of agriculture in the future. What will be different? What will the same? What challenges will arise as a result?
10. Encourage students to explore the global challenges and implications of local issues.

References

Utilizing the “Elements of Reasoning” to Teach

By Rick Ruddell and John Ricketts

I remember a student in my high school agricultural education program named Isaac. He was a confident and opinionated young man who never missed a chance to enter an argument or state his opinion. I recall a day when he adamantly argued that he could drive his ATV up a 90 degree incline. When I placed a framing square on the table and demonstrated what 90 degrees looked like he was still clinging to his position as he stated, “I can drive up a 90 degree incline if I get up enough speed first.” Although Isaac surely does not represent every student, his poorly developed reasoning skills do reflect a problem our middle and high school students across the country, in career and technical, and non-career and technical education programs.

Teaching students to think “in” and “about” agriculture is a challenge for all agriculture teachers at every level of instruction. From the agriculture in the classroom to the middle and high school teacher, to the university professor, we all need to spend time thinking about how we can teach students sound reasoning skills.

We would like to propose a tool for use in secondary agricultural education programs that could help the Isaces (and Irenees) in our classes. This tool, a modified version of the Elements of Reasoning (Paul, 1995), is widely utilized in education and has proven to be invaluable when teaching students reasoning skills they can apply in agriculture and in life (Figure 1).

The uses of this tool vary from problem solving to writing essay questions, from thinking through decisions to posing an argument. When we make full use of this teaching tool, we can expect our students to enhance their critical thinking skills, make better decisions, evaluate information more thoroughly, and develop better reasoning skills.

We propose that agricultural education teachers take the time to teach students how to use the elements of reasoning in their classrooms and laboratories and then hold students accountable for using the elements of reasoning by evaluating their use of this thinking framework.

The seven elements of reasoning are purpose and objectives, information, facts, and data, assumptions, data interpretation, concepts and theories, points of view, and conclusions, implications, and consequences. Each element is considered in the reasoning process. Students are taught the framework and its use and are then encouraged to apply it to real situations.

Let’s look at an agriscience example to demonstrate how a teacher might utilize the “Elements of Reasoning”. Students are faced with a greenhouse management problem where they need to decide on the plants to produce for the next year. The students are interested in profit maximization as well as producing plants that are easy to grow. After posing the problem to the students, the teacher could lead them through the decision making process by utilizing the elements of reasoning.

To begin, the teacher would clarify that the students understand the problem, situation, or question to be answered. It is particularly important to keep the purpose of our thinking at the forefront of the reasoning process in order to avoid getting side-tracked. From this point, it is possible to address the remaining six elements in any way that make the best logical sense. For the purpose of this discussion, we will move clockwise through the elements.

After clarifying the purpose of our thinking, we could collect information, facts, and data about the question at hand. What types of plants can be raised in our greenhouse? What is the growing season for these plants? Which plants offer high profits while requiring the lowest labor and financial inputs? What kinds of plants would consumers buy? The students will also want to collect market data from previous years, consumer demand information, information about the kinds of plants that thrive in the area, and other information that will aid in their decision.

Next, the teacher would identify assumptions about the purpose or question. What do we presume to know about the situation without having specific data to support the assumption? In this example, we would assume that we can raise plants in the greenhouse, that we have access to fertilizer, water, and raw materials for production. We probably would also assume that we have the expertise to raise the plants selected.

In the data interpretation element, students would be asked to assimilate what they have found and begin to formulate a decision. Perhaps plants are eliminated at this stage while moving others to a “short-list” for production.

The students would then identify concepts and theories related to the question that would help them arrive at a decision. The concepts and theories for this problem would likely include supply and demand, growth requirements for the plants, and greenhouse management.

Seeking the opinions of others is the primary concern of the element “points of view.” We want to consider the positions of others facing the same decision. Asking for expert advice, looking at trade journals, and studying management plans proposed by others are all examples of this element.

Finally, we want students to come to a conclusion or final decision based upon what they have been able to learn through the elements of reasoning. In identifying their conclusion, they should identify the potential consequences of implementing their decision.

The elements of reasoning serve as an extremely useful tool in teaching agricultural education students decision-making and reasoning skills. Teachers can use this model as an instructional framework, a decision making tool, or for evaluating conceptual understanding.

Reference

Rick Ruddell is an Associate Professor at the University of Florida.

John Ricketts is a graduate assistant at the University of Florida.
The Final Presentation

By Billie Foster and Jack Elliot

Teaching is a much broader challenge than many people think. Even within the ranks of educators, there is often the myth that it is a simple process. Teaching, real teaching, requires commitment and dedication, and understanding of the students, the school and the community in which an educator works. The process of pulling all of these things together is very time consuming. Understanding the importance of that process is a lesson in experiential learning.

John Dewey expressed a definition of the value of experience when he penned:

Experiencing like breathing is a rhythm of intakings and outgoings...William James aptly compared the course of a conscious experience to the alternate flaps and perching of a bird...Each resting place in experience is an undergoing which is absorbed and taken home the consequences of prior doing, and unless the doing is that of utter caprice or sheer routine, each doing carries in itself meaning that has been extracted and conserved (LW 10:62) (Campbell, 1995).

Those who choose to follow the path of the educator, regardless of their discipline, usually find that an ounce of preparation is worth its weight in gold.

Student teachers at The University of Arizona, enrolled in Instructional Materials Development and Methods for Teaching Agricultural Education courses prepare a one-hour, individual presentation for the faculty at the end of the fall semester. At each presentation, the student presents all of the collected and prepared materials needed for his/her assigned lessons. Student teachers meet with their cooperating teachers in August prior to the beginning of the semester. During that meeting they are given the units they will be teaching the following spring.

Students are presented with a rubric at the beginning of the semester in order to begin preparations for their presentations. The final presentation ensures that all student teachers are prepared to enter their student teaching experience with the necessary tools to aid their success. A student here displays some of the materials presented. (Photo courtesy of Billie Foster)

Throughout the semester, the students complete various assignments that are components of the final presentation. At the end of the semester, they schedule an individual, hour long interview with the faculty to complete their final presentation. This presentation simulates a professional interview. The students come in professional dress, prepared to demonstrate and/or explain various components found in their collected paraphernalia.

At the end of the fall semester the students are prepared to enter the classroom in February. The student teachers arrive at their cooperating centers with more confidence, a sense of accomplishment, experience in writing objectives, and lessons that are relevant to their cooperating center and to their chosen career. They can step into their schools with all their units complete and teach a full day.

The final presentations ensure that all student teachers are prepared to enter their student teaching experience with the necessary tools to aid their success. A student here displays some of the materials presented. (Photo courtesy of Billie Foster)

The final presentations often include the use of Microsoft grade book template for EXCEL.

Moreover, these student teachers can focus on other areas of teaching agricultural education besides lesson planning.

By being adequately prepared for their classroom responsibilities, the student teachers glean valuable time to interact with their communities. Sarah Osborn Welby, the 2001 National Association of Educators (NAAE) Region VI Vice-President, noted in a recent issue of Making a Difference, "As agricultural teachers, it is our job to educate others about agriculture and to get the students involved in their communities. We are in a unique position to help build bridges between the school and the community. By getting students involved in the community, we can also get the community involved in the school. When that happens, everyone wins!"

The completion of expected lesson plans, prior to reaching the cooperating teaching site, allows student teachers to have the luxury of spending more time with their seasoned, cooperating teachers and to begin to understand what working together really means. The Final Presentation becomes another link in the chain of preparing a more qualified pre-service teacher and subsequently enhances the learning environment for today's students. Through the process of this type of experiential learning, student teachers develop a greater appreciation for the value of being prepared.

References


Billie Foster is an Associate Professor at the University of Arizona.

Jack Elliot is an Associate Professor at the University of Arizona.
Putting Personality Type Theories in the Driver’s Seat

By Tracy Kitchens

When teachers design their curriculum for the first time, what thoughts are going through their minds? What is the driving force behind what is decided? Hedges (1997) suggests four questions in terms of curriculum development: who to teach, what to teach, when to teach, and how long to teach. We know the questions and many of us know the answers for the most part. What drove any of us to make the decisions we did? Possibilities might have included the beliefs we had about our background or perhaps, in addition to those, our personality.

There are many kinds of personality instruments. The basis of a more popular personality theory is by Carl Jung, in his book Psychological Type. From those theories, the mother-daughter team of Briggs and Myers developed the Myers-Briggs Type Indicator (MBTI). Based on Jung and the MBTI, David Keirsey developed his theories of Temperament, which lead to a more entertain- ing typology system called True Colors and Color Communication Group (1998).

Perhaps you were previously exposed to some sort of “type” instruments in methods class, at an FFA conference, or at a teacher in-service. The point is that you were probably exposed to personality types, and were told you could leave the room being able to... do what?

When I administered the MBTI and/or True Colors instruments to my students, I was finding that a majority of the class possessed types that preferred hands-on activities. This could explain several problems I faced as a first-year teacher, such as some minor discipline problems. Now I make a conscious effort to include more hands-on activities in my curriculum. It may not be my strong point, but I do it to meet the needs of my students.

Looking within your curriculum, how can you utilize knowledge of personality types? To begin, you could use the theories to help your students in general and your FFA officers understand others better. If you understand personality typing, then your students can learn some basic information on how other people are different and how to deal with other personality types.

When team-teaching the speech class, we used True Colors to help the class understand different people in the audience. We discussed why doing an audience analysis is so important in knowing who you are speaking to. Another example is the junior agribusiness class. The MBTI and corresponding workshop assisted students in searching for a Supervised Agricultural Experience project and a possible career direction.

Beyond directly exposing your students to personality typology, you can use it when you design activities for groups. The more you are aware of personality types, the easier it becomes to type your students. So, instead of pairing two students who are structured with two kids who are flexible by nature, mix the pairs so you add different strengths to their team. For example, in working with record books, I give examples for the students to work through in groups. First, I try to make certain I have an “expert” in the field relating to the example. Secondly, I make certain to mix the groups in terms of their personality type. If a group of students does not prefer structure, and they work together on record books, that require a great deal of structure, what would you guess the outcome to be? It would likely lead to off-track conversations and very little work. Mixing the personality types helps to keep the entire group focused.

These items are only a few examples of how personality typology can be utilized in the classroom. As a side note, this article was written with personality typing in mind. I started off with a big picture perspective, in terms of personality type, uses in curriculum and then progressed toward more specific examples within particular units. So instead of wondering how to develop your curriculum, let personality types drive you in making decisions for your classroom, SAIE, and FFA chapter that meet the needs of your students.

References

My Agricultural Education Story

By Andrea B. Spencer

My Agricultural Education story is told through the eyes of an agricultural education teacher’s spouse, though my story does not begin here. I was an active member in my own home chapter, a FFA World Ag Exchange student, a foreign exchange student, a national finalist in 4-H and earned my American FFA Degree. I maintain close ties to the FFA and Ag Education by serving on the Iowa FFA Alumni Board and the Iowa FFA Agriscience Fair committee.

But nothing or no one has influenced my decision to seek a career as an agricultural education instructor more than my husband and his work.

When we first moved to our new home, we decided that his work with students needed to keep him as close to school as possible. So I made the sacrifice to commute to work.

Things did not start out well for my husband. That first week of teaching was a nightmare. I was not prepared for the emotions I had to deal with when he came home at night. The students constantly compared him to their last agriculture teacher and he felt unprepared. But, he remained firm and eventually mutual respect was established. For the first time ever, the officers started FFA meetings by using opening exercises called the word “official dress” actually had meaning.

The chapter grew and became more successful, though the community and school administration did not seem to support the program. I watched as my husband became unhappy with his career decision. He considered leaving the profession all together.

Late in the summer following his second year of teaching, two excellent programs opened. He had a tough time choosing between the two. He opted for the program and chapter he felt needed him most. The students had been involved in the interview process and it was clear that they wanted to learn. So we packed up our belongings and headed west. We bought a small acreage where we built our home and hired contract farmers to gain hands-on experience.

The move to this rural community has at times been a challenge. But the people are friendly. You know you live in a quaint small town when the phone company secretary has your phone number memorized. We are happy here.

So, what was the program like when we arrived? It seemed perfect. It had taken only one year with a teacher who didn’t care, to run it into the ground. My husband inherited an office, classroom, aquaculture lab, and a room with the doors closed. There was a thick layer of dust on everything (except the fish; they just had slime). It took the two of us the rest of the summer to clean out the office and classroom. A new computer was hooked up in the office and things were off and running. Aquaculture was a new endeavor and not at all interesting to my husband. He accidentally killed over 100 fish one fateful weekend. But, the corn in the test-plots flourished the next year. Three days into the school year I found myself in a hospital waiting room while my husband had his appendix removed. During the two weeks he was out of commission, I helped him prepare lesson plans. At the end of the two weeks, the students knew me better than they knew my husband. After all, there was an officer meeting and a chapter meeting to attend and the soils team needed training.

Things are running more smoothly now. My husband is now entering his third year at this school and is more excited than you could ever imagine. The FFA chapter will double this year. His freshman class is 20 strong, they are excited about agriculture. A working alumni chapter has been established, and parents and alumni now call the agriculture room to ask about the class of assistance. Oh, and that junk room I mentioned—this summer we converted it to an officer leadership development center and the aquaculture lab has been converted to a large plant science lab. This year, we took six National AgricScience Fair finalists along with a national band and a national choir member, to Louisville. The secret to success? Great students, a good school administration and a supportive community help. The drive of the agriculture teacher plays an important role. When our family first moved to the area, we usually try the phone number at school. As for weekends, Saturdays are mainly reserved for FFA events. I am guessing when agriculture is in both your systems and you both enjoy working with students and watching them grow, it’s hard not to work together. After all, there’s the soil judging team to be trained. AgricScience projects to start, the test-plots will need to be harvested and the chapter reporter, wants photography lessons. There’s a chapter meeting this week, and the home- coming float construction to supervise, the member auction to attend, Stuey wants help with her public speech, and then there’s the freshmen class to help prepare and the cookies to bake for the 8th grade exploration class...I just picture you get the picture.

Andrea B. Spencer is a graduate student at Iowa State University.
A Call to Action for Project Food, Land & People™

By Bianca Honing

Project Food, Land & People (FLP) is a national curriculum project for grades PreK-12. It is an educational program designed by educators for educators. It accomplishes what three other national curriculum projects, Project Wild, Project Wet, and Project Learning Tree fail to do, namely, it integrates wildlife, water, and trees with food, land, and people. It appropriately integrates human activity with some of the changes in the earth’s ecosystems. An early and continuous exposure to holistic views of the natural world, together with conveyance of an obligation of personal and collective responsibility for the indefinite perpetuation of this world, must become indispensable dimensions of everyone’s education.

The Project began in Colorado soon after the release of the National Science Education Standards, which promoted the idea that scientific literacy is an integral part of all K-12. The Project emphasizes the importance of understanding the interdependence of people and the environment, and the need for students to develop critical thinking and problem-solving skills. The Project also highlights the importance of promoting environmental education and sustainability in schools.

FLP Lessons

There are currently 40 lessons in FLP, prepared for grades PreK-3 through grades 9-12. They are divided into six themes: agriculture, conservation, energy, environmental education, health, and sustainability. Each lesson includes objectives, materials, procedures, and evaluation tools. The lessons are designed to be adaptable to different grade levels and can be integrated into various subjects, such as science, social studies, and health. They also incorporate hands-on activities, field trips, and community projects to help students understand the local impact of environmental issues.

Involvement

There are many ways to get involved with FLP, including volunteering as a facilitator, organizing a local chapter, or hosting a workshop. The Project also offers a list of resources, such as lesson plans, activity guides, and workshops, to help educators incorporate environmental education into their curriculum. The Project encourages educators to collaborate with other educators and community organizations to promote sustainability and environmental literacy.
From the College Classroom to the High School Classroom: Theory to Practice

By Leanne McGee, Thomas Dobblies and Donnie King

The demands on agriculture teachers' time are ever increasing; however, teachers must take the time to embellish their learning strategies as well as their technical knowledge to survive in today's educational system.

Four teachers from upstate South Carolina were interviewed for this article concerning learning theories and practices.

Mr. Glenn Stevens, of Belton-Honea Path High School, in Honea Path, SC, has been teaching for 17 years with a program of 184 students. His program varies from livestock production to agricultural mechanics to wildlife management and he is also responsible for one greenhouse.

Mr. David Nixon, of Crescent High School, Crescent, SC, has been teaching agriculture for four years. He is part of a two-teacher program with 116 students. The program is traditional with a focus on agricultural mechanics, livestock production, and forestry.

Mr. Jason Wiggins, of Travelers Rest High School, in Travelers Rest, SC, has ten years of experience and a program consisting of 118 students. His program is mainly focused on production and horticulture, with one greenhouse.

Barry Burdette, of Golden Strip Career Center, in Greenville, SC, is in his eighteenth year of teaching, in a primarily horticulture program consisting of 38 students with one large greenhouse. Burdette's students are actively involved with a variety of landscaping projects.

For this set of interviews, several educators throughout the state were asked to identify questions they felt were relevant to finding answers to learning theories and practices.

After collecting all of the questions considered to be important by our panel, the information was merged into nine questions that were used in the interviews. Below is a listing of the questions with a brief summary of the responses:

- Do you do research professional journals and magazines that contain research in agricultural education?
  - All of the teachers responded that they do read some type of journal or magazine related to the classes they teach, although they are not able to read as much as they would like, due to time constraints. Each of the teachers indicated they spend much of their time preparing for classroom and laboratory activities.

- Do you feel the available research from professional journals and magazines is applicable to you as a classroom teacher? If not, why?
  - The teachers indicated that a considerable portion of published research is not applicable to their classroom settings due to the fact that most of the classes have several different learning levels represented. All of the teachers reported that their classes were composed of students ranging from those with special needs to the top students in the school. Therefore, it is very difficult to administer teaching methods that apply to all students at one time.

- Are the teaching methods that we demonstrate in collegiate teacher education programs applicable to today's classroom settings?
  - Two of the teachers said that they still use what they learned about methods at the university level. The other two said that what they were taught in teaching methods is not being taught today. They believe new teachers are not prepared when they graduate from the university.

- What training did you receive from the university in regard to laboratory instruction?
  - All four teachers felt that they needed more training in regard to laboratory instruction. They indicated that they needed more training in the areas of woodworking, turf grass management, agricultural mechanics, and animal science. Also, they said that it would have been good to have a lab that focused on safety.

- How do you apply learning theories to your everyday teaching?
  - These teachers assess their students' different learning levels. Administering tests that will allow the teachers to understand the students' learning levels can be useful. However, these teachers indicated that most of the learning theories are common sense and a lot of the teaching methods are based on trial and error.

- What is the benefit of studying learning theories as a part of your pre-service or in-service education?
  - Each of the teachers indicated that by being aware of different kinds of learners you can try to adjust your teaching to the various learning styles and by doing this you would become a more effective teacher.

- What teaching tool has been the most beneficial to you to help students understand the importance of your lesson/lectures?
  - Each teacher indicated that experiential learning (hands on training) and relating the lectures to real life situations represent the best way to help students learn. They indicated that experiential learning afforded students the opportunity to make connections between the classroom and laboratory. A prime example used by one teacher was teaching cattle management by allowing the students to design and build model cattle management facilities out of plywood and dowel sticks. After the model facilities are built, the students are then taken to see actual working facilities to reinforce the learning objective.

- Do you believe that the learning style of a student plays an important part in how a student learns, and why?
  - All of the teachers believed learning styles play an important part in how students learn. Some students learn better in the classroom than they do in the lab and vice versa.

- Do you try to learn the learning styles of your students? If so, how?
  - Each of the teachers attempts to learn the different learning styles of the students. One of the teachers believed that you should learn what works and does not work with your students. However, he further stated that teachers teach in the same style regardless, because that is what is comfortable to them. The other teachers indicated that you should administer a learning style questionnaire and talk with your students to try to learn the different learning styles.

Experiential learning (hands-on training) and relating the lectures to real life situations represent the best way to help students learn. They indicated that experiential learning afforded students the opportunity to make connections between the classroom and laboratory. A prime example used by one teacher was teaching cattle management by allowing the students to design and build model cattle management facilities out of plywood and dowel sticks. After the model facilities are built, the students are then taken to see actual working facilities to reinforce the learning objective.

- A prime example used by one teacher was teaching cattle management by allowing the students to design and build model cattle management facilities out of plywood and dowel sticks. After the model facilities are built, the students are then taken to see actual working facilities to reinforce the learning objective.

- A prime example used by one teacher was teaching cattle management by allowing the students to design and build model cattle management facilities out of plywood and dowel sticks. After the model facilities are built, the students are then taken to see actual working facilities to reinforce the learning objective.

- A prime example used by one teacher was teaching cattle management by allowing the students to design and build model cattle management facilities out of plywood and dowel sticks. After the model facilities are built, the students are then taken to see actual working facilities to reinforce the learning objective.

- A prime example used by one teacher was teaching cattle management by allowing the students to design and build model cattle management facilities out of plywood and dowel sticks. After the model facilities are built, the students are then taken to see actual working facilities to reinforce the learning objective.

- A prime example used by one teacher was teaching cattle management by allowing the students to design and build model cattle management facilities out of plywood and dowel sticks. After the model facilities are built, the students are then taken to see actual working facilities to reinforce the learning objective.
A Focus on the Curriculum in Agricultural Education: 2002 Themes

The 2002 theme for The Agricultural Education Magazine will be: A Focus on The Curriculum in Agricultural Education

We are soliciting articles that share ideas and activities being used by agricultural educators at every level of the profession. Please consider developing an article on one of the following sub-themes. Articles may be submitted to theme editors or to Robert Martin, Editor of The Agricultural Education Magazine.

January - February 2002, Issue
Theme: Innovative Curriculum Ideas & Practices in Agricultural Education. What are some innovative approaches being used to enhance the curriculum? What does the "new" curriculum look like? What are the unique practices in curriculum design and delivery that are being used today? The key component is innovation. How has innovation in the curriculum made a difference?

Theme Editor: Dr. Brenda Seevers
New Mexico State University
Phone: 505-646-1135
e-mail: bseevers@nmsu.edu

Deadline has passed for this issue.

March - April 2002, Issue
Theme: The Role of Science in the Agricultural Education Curriculum. How has an emphasis on science changed the curriculum at the level of delivery? What innovative practices are teachers using that add "science" to the agricultural education curricu-

Phone: 402-472-8739
email: flbell1@unl.edu

Articles Due to Theme Editor:
June 1, 2002
Articles Due to Editor:
June 15, 2002

September - October 2002, Issue
Theme: The Role of Research in the Agricultural Education Curriculum. Does research in Agricultural Education impact the curriculum? If so, how? What does research tell us about the curriculum? What are some examples of a linkage between research and our curriculum?

Theme Editor: Dr. Greg Miller
Iowa State University
Phone: 515-294-2583
e-mail: gsmiller@iastate.edu

Articles Due to Theme Editor:
August 1, 2002
Articles Due to Editor:
August 15, 2002

July - August 2002, Issue
Theme: The Role of Community Resources in the Agricultural Education Curriculum. How do we use community resources in making the curriculum real? Why are community resources important? What difference do they make in the curriculum?

Theme Editor: Dr. Lloyd Bell
University of Nebraska

Phone: 402-472-8739
e-mail: flbell1@unl.edu

Articles Due to Theme Editor:
September 15, 2002
Articles Due to Editor:
October 1, 2002